These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 24106102)
21. Yeast eIF4B binds to the head of the 40S ribosomal subunit and promotes mRNA recruitment through its N-terminal and internal repeat domains. Walker SE; Zhou F; Mitchell SF; Larson VS; Valasek L; Hinnebusch AG; Lorsch JR RNA; 2013 Feb; 19(2):191-207. PubMed ID: 23236192 [TBL] [Abstract][Full Text] [Related]
22. Translation initiation by factor-independent binding of eukaryotic ribosomes to internal ribosomal entry sites. Pisarev AV; Shirokikh NE; Hellen CU C R Biol; 2005 Jul; 328(7):589-605. PubMed ID: 15992743 [TBL] [Abstract][Full Text] [Related]
23. Large-scale movement of eIF3 domains during translation initiation modulate start codon selection. Llácer JL; Hussain T; Dong J; Villamayor L; Gordiyenko Y; Hinnebusch AG Nucleic Acids Res; 2021 Nov; 49(20):11491-11511. PubMed ID: 34648019 [TBL] [Abstract][Full Text] [Related]
24. Structure of mammalian eIF3 in the context of the 43S preinitiation complex. des Georges A; Dhote V; Kuhn L; Hellen CU; Pestova TV; Frank J; Hashem Y Nature; 2015 Sep; 525(7570):491-5. PubMed ID: 26344199 [TBL] [Abstract][Full Text] [Related]
25. eIF2α interactions with mRNA control accurate start codon selection by the translation preinitiation complex. Thakur A; Gaikwad S; Vijjamarri AK; Hinnebusch AG Nucleic Acids Res; 2020 Oct; 48(18):10280-10296. PubMed ID: 32955564 [TBL] [Abstract][Full Text] [Related]
26. Kinetic and thermodynamic analysis of the role of start codon/anticodon base pairing during eukaryotic translation initiation. Kolitz SE; Takacs JE; Lorsch JR RNA; 2009 Jan; 15(1):138-52. PubMed ID: 19029312 [TBL] [Abstract][Full Text] [Related]
27. Initiation factor eIF2γ promotes eIF2-GTP-Met-tRNAi(Met) ternary complex binding to the 40S ribosome. Shin BS; Kim JR; Walker SE; Dong J; Lorsch JR; Dever TE Nat Struct Mol Biol; 2011 Oct; 18(11):1227-34. PubMed ID: 22002225 [TBL] [Abstract][Full Text] [Related]
28. Ribosomal proteins cross-linked to the initiator AUG codon of a mRNA in the translation initiation complex by UV-irradiation. Takahashi Y; Hirayama S; Odani S J Biochem; 2005 Jul; 138(1):41-6. PubMed ID: 16046447 [TBL] [Abstract][Full Text] [Related]
29. Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site. Fuchs G; Petrov AN; Marceau CD; Popov LM; Chen J; O'Leary SE; Wang R; Carette JE; Sarnow P; Puglisi JD Proc Natl Acad Sci U S A; 2015 Jan; 112(2):319-25. PubMed ID: 25516984 [TBL] [Abstract][Full Text] [Related]
30. Exploring accessibility of structural elements of the mammalian 40S ribosomal mRNA entry channel at various steps of translation initiation. Sharifulin DE; Bartuli YS; Meschaninova MI; Ven'yaminova AG; Graifer DM; Karpova GG Biochim Biophys Acta; 2016 Oct; 1864(10):1328-38. PubMed ID: 27346718 [TBL] [Abstract][Full Text] [Related]
31. Internal initiation of translation of bovine viral diarrhea virus RNA. Pestova TV; Hellen CU Virology; 1999 Jun; 258(2):249-56. PubMed ID: 10366562 [TBL] [Abstract][Full Text] [Related]
32. Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Kedersha N; Chen S; Gilks N; Li W; Miller IJ; Stahl J; Anderson P Mol Biol Cell; 2002 Jan; 13(1):195-210. PubMed ID: 11809833 [TBL] [Abstract][Full Text] [Related]
33. Eukaryotic ribosomal protein S3: A constituent of translational machinery and an extraribosomal player in various cellular processes. Graifer D; Malygin A; Zharkov DO; Karpova G Biochimie; 2014 Apr; 99():8-18. PubMed ID: 24239944 [TBL] [Abstract][Full Text] [Related]
34. Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Algire MA; Maag D; Lorsch JR Mol Cell; 2005 Oct; 20(2):251-62. PubMed ID: 16246727 [TBL] [Abstract][Full Text] [Related]
35. Specific functional interactions of nucleotides at key -3 and +4 positions flanking the initiation codon with components of the mammalian 48S translation initiation complex. Pisarev AV; Kolupaeva VG; Pisareva VP; Merrick WC; Hellen CU; Pestova TV Genes Dev; 2006 Mar; 20(5):624-36. PubMed ID: 16510876 [TBL] [Abstract][Full Text] [Related]
36. Small ribosomal protein RPS0 stimulates translation initiation by mediating 40S-binding of eIF3 via its direct contact with the eIF3a/TIF32 subunit. Kouba T; Dányi I; Gunišová S; Munzarová V; Vlčková V; Cuchalová L; Neueder A; Milkereit P; Valášek LS PLoS One; 2012; 7(7):e40464. PubMed ID: 22792338 [TBL] [Abstract][Full Text] [Related]
37. Selection of start codon during mRNA scanning in eukaryotic translation initiation. Basu I; Gorai B; Chandran T; Maiti PK; Hussain T Commun Biol; 2022 Jun; 5(1):587. PubMed ID: 35705698 [TBL] [Abstract][Full Text] [Related]
38. A conformational change in the eukaryotic translation preinitiation complex and release of eIF1 signal recognition of the start codon. Maag D; Fekete CA; Gryczynski Z; Lorsch JR Mol Cell; 2005 Jan; 17(2):265-75. PubMed ID: 15664195 [TBL] [Abstract][Full Text] [Related]
39. Initiation factor 3-induced structural changes in the 30 S ribosomal subunit and in complexes containing tRNA(f)(Met) and mRNA. Shapkina TG; Dolan MA; Babin P; Wollenzien P J Mol Biol; 2000 Jun; 299(3):615-28. PubMed ID: 10835272 [TBL] [Abstract][Full Text] [Related]
40. GTP-independent tRNA delivery to the ribosomal P-site by a novel eukaryotic translation factor. Dmitriev SE; Terenin IM; Andreev DE; Ivanov PA; Dunaevsky JE; Merrick WC; Shatsky IN J Biol Chem; 2010 Aug; 285(35):26779-26787. PubMed ID: 20566627 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]