These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 24106139)
1. Simultaneous isocratic separation of phenolic acids and flavonoids using micellar liquid chromatography. Hadjmohammadi MR; Nazari SS J Sep Sci; 2013 Dec; 36(23):3667-72. PubMed ID: 24106139 [TBL] [Abstract][Full Text] [Related]
2. Interpretive search of optimal isocratic and gradient separations in micellar liquid chromatography in extended organic solvent domains. Navarro-Huerta JA; Vargas-García AG; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2020 Apr; 1616():460784. PubMed ID: 31864726 [TBL] [Abstract][Full Text] [Related]
3. Micellar and aqueous-organic liquid chromatography using sub-2 microm packings for fast separation of natural phenolic compounds. Cao J; Qu H; Cheng Y J Sep Sci; 2010 Jul; 33(13):1946-53. PubMed ID: 20491058 [TBL] [Abstract][Full Text] [Related]
4. Improvement of the sensitivity of 2D LC-MEKC separation of phenolic acids and flavonoids natural antioxidants using the on-line preconcentration step. Cesla P; Fischer J; Jandera P Electrophoresis; 2012 Aug; 33(15):2464-73. PubMed ID: 22887169 [TBL] [Abstract][Full Text] [Related]
5. Performance of short-chain alcohols versus acetonitrile in the surfactant-mediated reversed-phase liquid chromatographic separation of β-blockers. Ruiz-Ángel MJ; Torres-Lapasió JR; Carda-Broch S; García-Álvarez-Coque MC J Chromatogr A; 2010 Nov; 1217(45):7090-9. PubMed ID: 20934180 [TBL] [Abstract][Full Text] [Related]
7. Submicellar and micellar reversed-phase liquid chromatographic modes applied to the separation of beta-blockers. Ruiz-Angel MJ; Torres-Lapasió JR; García-Alvarez-Coque MC; Carda-Broch S J Chromatogr A; 2009 Apr; 1216(15):3199-209. PubMed ID: 19249054 [TBL] [Abstract][Full Text] [Related]
8. Separation optimization of quercetin, hesperetin and chrysin in honey by micellar liquid chromatography and experimental design. Hadjmohammadi MR; Nazari SS J Sep Sci; 2010 Oct; 33(20):3144-51. PubMed ID: 20836080 [TBL] [Abstract][Full Text] [Related]
9. Chromatographic behaviour in reversed-phase high-performance liquid chromatography with micellar and submicellar mobile phases: effects of the organic modifier. Fischer J; Jandera P J Chromatogr B Biomed Appl; 1996 May; 681(1):3-19. PubMed ID: 8798907 [TBL] [Abstract][Full Text] [Related]
10. Retention mechanisms for basic drugs in the submicellar and micellar reversed-phase liquid chromatographic modes. Ruiz-Angel MJ; Torres-Lapasió JR; García-Alvarez-Coque MC; Carda-Broch S Anal Chem; 2008 Dec; 80(24):9705-13. PubMed ID: 19072272 [TBL] [Abstract][Full Text] [Related]
11. Implementation of gradients of organic solvent in micellar liquid chromatography using DryLab(®): separation of basic compounds in urine samples. Rodenas-Montano J; Ortiz-Bolsico C; Ruiz-Angel MJ; García-Alvarez-Coque MC J Chromatogr A; 2014 May; 1344():31-41. PubMed ID: 24767834 [TBL] [Abstract][Full Text] [Related]
12. Combined effects of mobile phase composition and temperature on the retention of phenolic antioxidants on an octylsilica polydentate column. Jandera P; Vyňuchalová K; Nečilová K J Chromatogr A; 2013 Nov; 1317():49-58. PubMed ID: 23972461 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous enhancement of separation selectivity and solvent strength in reversed-phase liquid chromatography using micelles in hydro-organic solvents. Khaledi MG; Strasters JK; Rodgers AH; Breyer ED Anal Chem; 1990 Jan; 62(2):130-6. PubMed ID: 2310010 [TBL] [Abstract][Full Text] [Related]
14. Extraction, separation, and detection methods for phenolic acids and flavonoids. Stalikas CD J Sep Sci; 2007 Dec; 30(18):3268-95. PubMed ID: 18069740 [TBL] [Abstract][Full Text] [Related]
15. Determination of phenolic acids and flavonoids in Taraxacum formosanum Kitam by liquid chromatography-tandem mass spectrometry coupled with a post-column derivatization technique. Chen HJ; Inbaraj BS; Chen BH Int J Mol Sci; 2012; 13(1):260-85. PubMed ID: 22312251 [TBL] [Abstract][Full Text] [Related]
16. Effects of the operation parameters on Hydrophilic Interaction Liquid Chromatography separation of phenolic acids on zwitterionic monolithic capillary columns. Skeříková V; Jandera P J Chromatogr A; 2010 Dec; 1217(51):7981-9. PubMed ID: 20732685 [TBL] [Abstract][Full Text] [Related]
17. Aliphatic carboxylic acids as new modifiers for separation of 2,4-dinitrophenyl amino acids by micellar liquid chromatography. Boichenko AP; Kulikov AU; Loginova LP; Iwashchenko AL J Chromatogr A; 2007 Jul; 1157(1-2):252-9. PubMed ID: 17543981 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous optimization of variables influencing selectivity and elution strength in micellar liquid chromatography. Effect of organic modifier and micelle concentration. Strasters JK; Breyer ED; Rodgers AH; Khaledi MG J Chromatogr; 1990 Jul; 511():17-33. PubMed ID: 2211909 [TBL] [Abstract][Full Text] [Related]
19. Eco-friendly mechanobiological assisted extraction of phenolic acids and flavonoids from Chrysanthemum. Zhang R; Wang Y; Song X; Yang J; Dong X; Xie T; Wang S; Cao J J Pharm Biomed Anal; 2020 Jul; 186():113327. PubMed ID: 32402993 [TBL] [Abstract][Full Text] [Related]
20. Micellar versus hydro-organic mobile phases for retention-hydrophobicity relationship studies with ionizable diuretics and an anionic surfactant. Ruiz-Angel MJ; Carda-Broch S; García-Alvarez-Coque MC; Berthod A J Chromatogr A; 2004 Mar; 1030(1-2):279-88. PubMed ID: 15043280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]