These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 24106168)
1. Efficiency enhancement of dye-sensitized solar cells by the addition of an oxidizing agent to the TiO(2) paste. Ko KW; Lee M; Sekhon SS; Balasingam SK; Han CH; Jun Y ChemSusChem; 2013 Nov; 6(11):2117-23. PubMed ID: 24106168 [TBL] [Abstract][Full Text] [Related]
2. Hydrochloric acid treatment of TiO2 electrode for quasi-solid-state dye-sensitized solar cells. Park DW; Park KH; Lee JW; Hwang KJ; Choi YK J Nanosci Nanotechnol; 2007 Nov; 7(11):3722-6. PubMed ID: 18047045 [TBL] [Abstract][Full Text] [Related]
3. Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells. Yip CT; Guo M; Huang H; Zhou L; Wang Y; Huang C Nanoscale; 2012 Jan; 4(2):448-50. PubMed ID: 22159643 [TBL] [Abstract][Full Text] [Related]
5. Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells. Wang H; Bai Y; Wu Q; Zhou W; Zhang H; Li J; Guo L Phys Chem Chem Phys; 2011 Apr; 13(15):7008-13. PubMed ID: 21399795 [TBL] [Abstract][Full Text] [Related]
6. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands. Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932 [TBL] [Abstract][Full Text] [Related]
7. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules. Hu L; Dai S; Weng J; Xiao S; Sui Y; Huang Y; Chen S; Kong F; Pan X; Liang L; Wang K J Phys Chem B; 2007 Jan; 111(2):358-62. PubMed ID: 17214486 [TBL] [Abstract][Full Text] [Related]
8. Spatial arrangement of carbon nanotubes in TiO2 photoelectrodes to enhance the efficiency of dye-sensitized solar cells. Nath NC; Sarker S; Ahammad AJ; Lee JJ Phys Chem Chem Phys; 2012 Apr; 14(13):4333-8. PubMed ID: 22336885 [TBL] [Abstract][Full Text] [Related]
9. Facile and effective synthesis of hierarchical TiO2 spheres for efficient dye-sensitized solar cells. Ye M; Chen C; Lv M; Zheng D; Guo W; Lin C Nanoscale; 2013 Jul; 5(14):6577-83. PubMed ID: 23759872 [TBL] [Abstract][Full Text] [Related]
10. A TiO2 Nanofiber-Carbon Nanotube-Composite Photoanode for Improved Efficiency in Dye-Sensitized Solar Cells. Macdonald TJ; Tune DD; Dewi MR; Gibson CT; Shapter JG; Nann T ChemSusChem; 2015 Oct; 8(20):3396-400. PubMed ID: 26383499 [TBL] [Abstract][Full Text] [Related]
11. Surface-treated TiO2 nanoparticles for dye-sensitized solar cells with remarkably enhanced performance. Xin X; Scheiner M; Ye M; Lin Z Langmuir; 2011 Dec; 27(23):14594-8. PubMed ID: 22013973 [TBL] [Abstract][Full Text] [Related]
12. Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO heterostructures with a cobalt(II/III) redox electrolyte. Fan J; Fàbrega C; Zamani RR; Hao Y; Parra A; Andreu T; Arbiol J; Boschloo G; Hagfeldt A; Morante JR; Cabot A ACS Appl Mater Interfaces; 2013 Oct; 5(20):9872-7. PubMed ID: 24025444 [TBL] [Abstract][Full Text] [Related]
13. Green-engineered all-substrate mesoporous TiO(2) photoanodes with superior light-harvesting structure and performance. Benehkohal NP; Demopoulos GP ChemSusChem; 2014 Mar; 7(3):813-21. PubMed ID: 24520026 [TBL] [Abstract][Full Text] [Related]
14. Effect of the rutile content on the photovoltaic performance of the dye-sensitized solar cells composed of mixed-phase TiO2 photoelectrodes. Yun TK; Park SS; Kim D; Shim JH; Bae JY; Huh S; Won YS Dalton Trans; 2012 Jan; 41(4):1284-8. PubMed ID: 22124477 [TBL] [Abstract][Full Text] [Related]
15. One-step synthesis of vertically aligned anatase thornbush-like TiO2 nanowire arrays on transparent conducting oxides for solid-state dye-sensitized solar cells. Roh DK; Chi WS; Ahn SH; Jeon H; Kim JH ChemSusChem; 2013 Aug; 6(8):1384-91. PubMed ID: 23893968 [TBL] [Abstract][Full Text] [Related]
16. Efficient organic dye-sensitized solar cells: molecular engineering of donor-acceptor-acceptor cationic dyes. Cheng M; Yang X; Zhao J; Chen C; Tan Q; Zhang F; Sun L ChemSusChem; 2013 Dec; 6(12):2322-9. PubMed ID: 24039097 [TBL] [Abstract][Full Text] [Related]
17. Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells. Zhu G; Pan L; Xu T; Zhao Q; Lu B; Sun Z Nanoscale; 2011 May; 3(5):2188-93. PubMed ID: 21451826 [TBL] [Abstract][Full Text] [Related]
18. Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells. Chen HY; Zhang TL; Fan J; Kuang DB; Su CY ACS Appl Mater Interfaces; 2013 Sep; 5(18):9205-11. PubMed ID: 23962052 [TBL] [Abstract][Full Text] [Related]
19. TiO2 derived by titanate route from electrospun nanostructures for high-performance dye-sensitized solar cells. Nair AS; Zhu P; Babu VJ; Yang S; Krishnamoorthy T; Murugan R; Peng S; Ramakrishna S Langmuir; 2012 Apr; 28(15):6202-6. PubMed ID: 22469013 [TBL] [Abstract][Full Text] [Related]
20. A simple synthetic route to obtain pure trans-ruthenium(II) complexes for dye-sensitized solar cell applications. Barolo C; Yum JH; Artuso E; Barbero N; Di Censo D; Lobello MG; Fantacci S; De Angelis F; Grätzel M; Nazeeruddin MK; Viscardi G ChemSusChem; 2013 Nov; 6(11):2170-80. PubMed ID: 23926052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]