BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24106307)

  • 41. Image adaptive point-spread function estimation and deconvolution for in vivo confocal microscopy.
    Von Tiedemann M; Fridberger A; Ulfendahl M; Tomo I; Boutet de Monvel J
    Microsc Res Tech; 2006 Jan; 69(1):10-20. PubMed ID: 16416409
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Compressed Blind Deconvolution and Denoising for Complementary Beam Subtraction Light-Sheet Fluorescence Microscopy.
    Bai C; Liu C; Jia H; Peng T; Min J; Lei M; Yu X; Yao B
    IEEE Trans Biomed Eng; 2019 Oct; 66(10):2979-2989. PubMed ID: 30794159
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Macromolecular 3D SEM reconstruction strategies: signal to noise ratio and resolution.
    Woodward JD; Wepf RA
    Ultramicroscopy; 2014 Sep; 144():43-9. PubMed ID: 24830764
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phase diversity for three-dimensional imaging.
    Kner P
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1980-7. PubMed ID: 24322853
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SPITFIR(e): a supermaneuverable algorithm for fast denoising and deconvolution of 3D fluorescence microscopy images and videos.
    Prigent S; Nguyen HN; Leconte L; Valades-Cruz CA; Hajj B; Salamero J; Kervrann C
    Sci Rep; 2023 Jan; 13(1):1489. PubMed ID: 36707688
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An accurate and universal approach for short-exposure-time microscopy image enhancement.
    Chen F; Liu J; Gou D; Zhang X; Chen L; Liao H
    Comput Med Imaging Graph; 2020 Jul; 83():101743. PubMed ID: 32590290
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Widefield deconvolution epifluorescence microscopy combined with fluorescence in situ hybridization reveals the spatial arrangement of bacteria in sponge tissue.
    Manz W; Arp G; Schumann-Kindel G; Szewzyk U; Reitner J
    J Microbiol Methods; 2000 Apr; 40(2):125-34. PubMed ID: 10699668
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Signal and noise modeling in confocal laser scanning fluorescence microscopy.
    Herberich G; Windoffer R; Leube RE; Aach T
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):381-8. PubMed ID: 23285574
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Parallel Product-Convolution approach for representing the depth varying Point Spread Functions in 3D widefield microscopy based on principal component analysis.
    Arigovindan M; Shaevitz J; McGowan J; Sedat JW; Agard DA
    Opt Express; 2010 Mar; 18(7):6461-76. PubMed ID: 20389670
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of detector precision characteristics and histogram packing for compression of biological fluorescence micrographs.
    Bernas T; Starosolski R; Robinson JP; Rajwa B
    Comput Methods Programs Biomed; 2012 Nov; 108(2):511-23. PubMed ID: 21550128
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Widefield fluorescence localization microscopy for transcranial imaging of cortical perfusion with capillary resolution.
    Chen Z; Zhou Q; Robin J; Razansky D
    Opt Lett; 2020 Jul; 45(13):3470-3473. PubMed ID: 32630874
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatial resolution improvement and dose reduction potential for inner ear CT imaging using a z-axis deconvolution technique.
    McCollough CH; Leng S; Sunnegardh J; Vrieze TJ; Yu L; Lane J; Raupach R; Stierstorfer K; Flohr T
    Med Phys; 2013 Jun; 40(6):061904. PubMed ID: 23718595
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Digital scanned laser light sheet fluorescence microscopy.
    Keller PJ; Stelzer EH
    Cold Spring Harb Protoc; 2010 May; 2010(5):pdb.top78. PubMed ID: 20439423
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3D phase diversity: a myopic deconvolution method for short-exposure images: application to retinal imaging.
    Chenegros G; Mugnier LM; Lacombe F; Glanc M
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1349-57. PubMed ID: 17429480
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automatic fluorescent tag detection in 3D with super-resolution: application to the analysis of chromosome movement.
    Thomann D; Rines DR; Sorger PK; Danuser G
    J Microsc; 2002 Oct; 208(Pt 1):49-64. PubMed ID: 12366597
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sample drift correction in 3D fluorescence photoactivation localization microscopy.
    Mlodzianoski MJ; Schreiner JM; Callahan SP; Smolková K; Dlasková A; Santorová J; Ježek P; Bewersdorf J
    Opt Express; 2011 Aug; 19(16):15009-19. PubMed ID: 21934862
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spherical Deconvolution of Multichannel Diffusion MRI Data with Non-Gaussian Noise Models and Spatial Regularization.
    Canales-Rodríguez EJ; Daducci A; Sotiropoulos SN; Caruyer E; Aja-Fernández S; Radua J; Yurramendi Mendizabal JM; Iturria-Medina Y; Melie-García L; Alemán-Gómez Y; Thiran JP; Sarró S; Pomarol-Clotet E; Salvador R
    PLoS One; 2015; 10(10):e0138910. PubMed ID: 26470024
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination.
    Gustafsson MG; Shao L; Carlton PM; Wang CJ; Golubovskaya IN; Cande WZ; Agard DA; Sedat JW
    Biophys J; 2008 Jun; 94(12):4957-70. PubMed ID: 18326650
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two-dimensional structured illumination microscopy.
    Schropp M; Uhl R
    J Microsc; 2014 Oct; 256(1):23-36. PubMed ID: 25113075
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three-dimensional super-resolution structured illumination microscopy with maximum a posteriori probability image estimation.
    Lukeš T; Křížek P; Švindrych Z; Benda J; Ovesný M; Fliegel K; Klíma M; Hagen GM
    Opt Express; 2014 Dec; 22(24):29805-17. PubMed ID: 25606910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.