BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24106475)

  • 1. A novel CPU/GPU simulation environment for large-scale biologically realistic neural modeling.
    Hoang RV; Tanna D; Jayet Bray LC; Dascalu SM; Harris FC
    Front Neuroinform; 2013; 7():19. PubMed ID: 24106475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient simulation environment for modeling large-scale cortical processing.
    Richert M; Nageswaran JM; Dutt N; Krichmar JL
    Front Neuroinform; 2011; 5():19. PubMed ID: 22007166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-Processing: A Case Study.
    Naveros F; Luque NR; Garrido JA; Carrillo RR; Anguita M; Ros E
    IEEE Trans Neural Netw Learn Syst; 2015 Jul; 26(7):1567-74. PubMed ID: 25167556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards the Simulation of a Realistic Large-Scale Spiking Network on a Desktop Multi-GPU System.
    Torti E; Florimbi G; Dorici A; Danese G; Leporati F
    Bioengineering (Basel); 2022 Oct; 9(10):. PubMed ID: 36290510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LASSIE: simulating large-scale models of biochemical systems on GPUs.
    Tangherloni A; Nobile MS; Besozzi D; Mauri G; Cazzaniga P
    BMC Bioinformatics; 2017 May; 18(1):246. PubMed ID: 28486952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Simulations of Highly-Connected Spiking Cortical Models Using GPUs.
    Golosio B; Tiddia G; De Luca C; Pastorelli E; Simula F; Paolucci PS
    Front Comput Neurosci; 2021; 15():627620. PubMed ID: 33679358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient parameter calibration and real-time simulation of large-scale spiking neural networks with GeNN and NEST.
    Schmitt FJ; Rostami V; Nawrot MP
    Front Neuroinform; 2023; 17():941696. PubMed ID: 36844916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast Simulation of a Multi-Area Spiking Network Model of Macaque Cortex on an MPI-GPU Cluster.
    Tiddia G; Golosio B; Albers J; Senk J; Simula F; Pronold J; Fanti V; Pastorelli E; Paolucci PS; van Albada SJ
    Front Neuroinform; 2022; 16():883333. PubMed ID: 35859800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brian2CUDA: Flexible and Efficient Simulation of Spiking Neural Network Models on GPUs.
    Alevi D; Stimberg M; Sprekeler H; Obermayer K; Augustin M
    Front Neuroinform; 2022; 16():883700. PubMed ID: 36387586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale.
    Okada S; Murakami K; Incerti S; Amako K; Sasaki T
    Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.
    Malektaji S; Lima IT; Escobar I MR; Sherif SS
    Comput Methods Programs Biomed; 2017 Oct; 150():97-105. PubMed ID: 28859833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deploying and Optimizing Embodied Simulations of Large-Scale Spiking Neural Networks on HPC Infrastructure.
    Feldotto B; Eppler JM; Jimenez-Romero C; Bignamini C; Gutierrez CE; Albanese U; Retamino E; Vorobev V; Zolfaghari V; Upton A; Sun Z; Yamaura H; Heidarinejad M; Klijn W; Morrison A; Cruz F; McMurtrie C; Knoll AC; Igarashi J; Yamazaki T; Doya K; Morin FO
    Front Neuroinform; 2022; 16():884180. PubMed ID: 35662903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NeuroGPU: Accelerating multi-compartment, biophysically detailed neuron simulations on GPUs.
    Ben-Shalom R; Ladd A; Artherya NS; Cross C; Kim KG; Sanghevi H; Korngreen A; Bouchard KE; Bender KJ
    J Neurosci Methods; 2022 Jan; 366():109400. PubMed ID: 34728257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of GPU- and CPU-implementations of mean-firing rate neural networks on parallel hardware.
    Dinkelbach HÜ; Vitay J; Beuth F; Hamker FH
    Network; 2012; 23(4):212-36. PubMed ID: 23140422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores.
    Chikkagoudar S; Wang K; Li M
    BMC Res Notes; 2011 May; 4():158. PubMed ID: 21615923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Granular layEr Simulator: Design and Multi-GPU Simulation of the Cerebellar Granular Layer.
    Florimbi G; Torti E; Masoli S; D'Angelo E; Leporati F
    Front Comput Neurosci; 2021; 15():630795. PubMed ID: 33833674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating epistasis analysis in human genetics with consumer graphics hardware.
    Sinnott-Armstrong NA; Greene CS; Cancare F; Moore JH
    BMC Res Notes; 2009 Jul; 2():149. PubMed ID: 19630950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic parallelism for synaptic updating in GPU-accelerated spiking neural network simulations.
    Kasap B; van Opstal AJ
    Neurocomputing (Amst); 2018 May; 302():55-65. PubMed ID: 30245550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator.
    Wang RM; Thakur CS; van Schaik A
    Front Neurosci; 2018; 12():213. PubMed ID: 29692702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.