These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24106475)

  • 21. Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks.
    Naveros F; Garrido JA; Carrillo RR; Ros E; Luque NR
    Front Neuroinform; 2017; 11():7. PubMed ID: 28223930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphics Processing Unit Acceleration and Parallelization of GENESIS for Large-Scale Molecular Dynamics Simulations.
    Jung J; Naurse A; Kobayashi C; Sugita Y
    J Chem Theory Comput; 2016 Oct; 12(10):4947-4958. PubMed ID: 27631425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SWsnn: A Novel Simulator for Spiking Neural Networks.
    Wang Z; Li X; Fan J; Meng J; Lin Z; Pan Y; Wei Y
    J Comput Biol; 2023 Sep; 30(9):951-960. PubMed ID: 37585615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A hybrid CPU/GPU method for Hartree-Fock self-consistent-field calculation.
    Qi J; Zhang Y; Yang M
    J Chem Phys; 2023 Sep; 159(10):. PubMed ID: 37681693
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GPU/CPU Algorithm for Generalized Born/Solvent-Accessible Surface Area Implicit Solvent Calculations.
    Tanner DE; Phillips JC; Schulten K
    J Chem Theory Comput; 2012 Jul; 8(7):2521-2530. PubMed ID: 23049488
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular dynamics simulations through GPU video games technologies.
    Loukatou S; Papageorgiou L; Fakourelis P; Filntisi A; Polychronidou E; Bassis I; Megalooikonomou V; Makałowski W; Vlachakis D; Kossida S
    J Mol Biochem; 2014; 3(2):64-71. PubMed ID: 27525251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accelerating Large Scale Image Analyses on Parallel, CPU-GPU Equipped Systems.
    Teodoro G; Kurc TM; Pan T; Cooper LA; Kong J; Widener P; Saltz JH
    Proc IPDPS (Conf); 2012 May; 2012():1093-1104. PubMed ID: 25419545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model.
    Liu F; Velikina JV; Block WF; Kijowski R; Samsonov AA
    IEEE Trans Med Imaging; 2017 Feb; 36(2):527-537. PubMed ID: 28113746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When Simulating a Highly-Connected Cortical Model.
    Knight JC; Nowotny T
    Front Neurosci; 2018; 12():941. PubMed ID: 30618570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An efficient automated parameter tuning framework for spiking neural networks.
    Carlson KD; Nageswaran JM; Dutt N; Krichmar JL
    Front Neurosci; 2014; 8():10. PubMed ID: 24550771
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the accuracy and computational cost of spiking neuron implementation.
    Valadez-Godínez S; Sossa H; Santiago-Montero R
    Neural Netw; 2020 Feb; 122():196-217. PubMed ID: 31689679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units.
    Igarashi J; Shouno O; Fukai T; Tsujino H
    Neural Netw; 2011 Nov; 24(9):950-60. PubMed ID: 21764258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. hybridMANTIS: a CPU-GPU Monte Carlo method for modeling indirect x-ray detectors with columnar scintillators.
    Sharma D; Badal A; Badano A
    Phys Med Biol; 2012 Apr; 57(8):2357-72. PubMed ID: 22469917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Streaming parallel GPU acceleration of large-scale filter-based spiking neural networks.
    Slażyński L; Bohte S
    Network; 2012; 23(4):183-211. PubMed ID: 23098420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient methods for implementation of multi-level nonrigid mass-preserving image registration on GPUs and multi-threaded CPUs.
    Ellingwood ND; Yin Y; Smith M; Lin CL
    Comput Methods Programs Biomed; 2016 Apr; 127():290-300. PubMed ID: 26776541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accelerating compartmental modeling on a graphical processing unit.
    Ben-Shalom R; Liberman G; Korngreen A
    Front Neuroinform; 2013; 7():4. PubMed ID: 23508232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acceleration of spiking neural network based pattern recognition on NVIDIA graphics processors.
    Han B; Taha TM
    Appl Opt; 2010 Apr; 49(10):B83-91. PubMed ID: 20357844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maboss for HPC environments: implementations of the continuous time Boolean model simulator for large CPU clusters and GPU accelerators.
    Šmelko A; Kratochvíl M; Barillot E; Noël V
    BMC Bioinformatics; 2024 May; 25(1):199. PubMed ID: 38789933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GPU-based efficient realistic techniques for bleeding and smoke generation in surgical simulators.
    Halic T; Sankaranarayanan G; De S
    Int J Med Robot; 2010 Dec; 6(4):431-43. PubMed ID: 20878651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions.
    Liu Y; Wirawan A; Schmidt B
    BMC Bioinformatics; 2013 Apr; 14():117. PubMed ID: 23557111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.