These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24107182)

  • 1. Bacterial and heterotrophic nanoflagellate densities and C-biomass estimates along an Alaskan tundra transect with prediction of respiratory CO2 efflux.
    Anderson OR
    J Eukaryot Microbiol; 2014; 61(1):11-6. PubMed ID: 24107182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fate of organic sources of carbon in moss-rich tundra soil microbial communities: a laboratory experimental study.
    Anderson OR
    J Eukaryot Microbiol; 2012; 59(6):564-70. PubMed ID: 22697791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Evidence that Fungi are Dominant Microbes in Carbon Content and Growth Response to Added Soluble Organic Carbon in Moss-rich Tundra Soil.
    Anderson OR; Lee JM; McGuire K
    J Eukaryot Microbiol; 2016 May; 63(3):363-6. PubMed ID: 26662659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature sensitivity of biomass-specific microbial exo-enzyme activities and CO
    Min K; Buckeridge K; Ziegler SE; Edwards KA; Bagchi S; Billings SA
    Glob Chang Biol; 2019 May; 25(5):1793-1807. PubMed ID: 30809844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of redox conditions on bacterial and fungal biomass and carbon dioxide production in Louisiana coastal swamp forest sediment.
    Seo DC; DeLaune RD
    Sci Total Environ; 2010 Aug; 408(17):3623-31. PubMed ID: 20553938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs.
    Biasi C; Rusalimova O; Meyer H; Kaiser C; Wanek W; Barsukov P; Junger H; Richter A
    Rapid Commun Mass Spectrom; 2005; 19(11):1401-8. PubMed ID: 15880633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil microbial respiration in arctic soil does not acclimate to temperature.
    Hartley IP; Hopkins DW; Garnett MH; Sommerkorn M; Wookey PA
    Ecol Lett; 2008 Oct; 11(10):1092-100. PubMed ID: 18627408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metaproteomics reveals functional partitioning and vegetational variation among permafrost-affected Arctic soil bacterial communities.
    Miller SE; Colman AS; Waldbauer JR
    mSystems; 2023 Jun; 8(3):e0123822. PubMed ID: 37272710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial communities associated with tree bark foliose lichens: a perspective on their microecology.
    Anderson OR
    J Eukaryot Microbiol; 2014; 61(4):364-70. PubMed ID: 24734903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient.
    Yergeau E; Bokhorst S; Huiskes AH; Boschker HT; Aerts R; Kowalchuk GA
    FEMS Microbiol Ecol; 2007 Feb; 59(2):436-51. PubMed ID: 16978243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rototillage, disking, and subsequent irrigation: effects on soil nitrogen dynamics, microbial biomass, and carbon dioxide efflux.
    Calderón FJ; Jackson LE
    J Environ Qual; 2002; 31(3):752-8. PubMed ID: 12026078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of amoeboid protists and the microbial community in moss-rich terrestrial ecosystems: biogeochemical implications for the carbon budget and carbon cycle, especially at higher latitudes.
    Anderson OR
    J Eukaryot Microbiol; 2008; 55(3):145-50. PubMed ID: 18460151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of carbon originating from CO2 into different compounds of soil microbial biomass and soil organic matter.
    Miltner A; Richnow HH; Kopinke FD; Kästner M
    Isotopes Environ Health Stud; 2005 Jun; 41(2):135-40. PubMed ID: 16191765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies.
    Treseder KK
    Ecol Lett; 2008 Oct; 11(10):1111-20. PubMed ID: 18673384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of elevated atmospheric CO2 concentrations on soil microorganisms.
    Freeman C; Kim SY; Lee SH; Kang H
    J Microbiol; 2004 Dec; 42(4):267-77. PubMed ID: 15650682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arctic microorganisms respond more to elevated UV-B radiation than CO2.
    Johnson D; Campbell CD; Lee JA; Callaghan TV; Gwynn-Jones D
    Nature; 2002 Mar; 416(6876):82-3. PubMed ID: 11882896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of nutrient deposition on bacterial communities in Arctic tundra soil.
    Campbell BJ; Polson SW; Hanson TE; Mack MC; Schuur EA
    Environ Microbiol; 2010 Jul; 12(7):1842-54. PubMed ID: 20236166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Legacy Effects of Winter Climate on Microbial Functioning After Snowmelt in a Subarctic Tundra.
    Väisänen M; Gavazov K; Krab EJ; Dorrepaal E
    Microb Ecol; 2019 Jan; 77(1):186-190. PubMed ID: 29948015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ(13) C and ∆(14) C.
    Hicks Pries CE; Schuur EA; Crummer KG
    Glob Chang Biol; 2013 Feb; 19(2):649-61. PubMed ID: 23504799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms.
    Stres B; Danevcic T; Pal L; Fuka MM; Resman L; Leskovec S; Hacin J; Stopar D; Mahne I; Mandic-Mulec I
    FEMS Microbiol Ecol; 2008 Oct; 66(1):110-22. PubMed ID: 18710395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.