These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 24108212)

  • 21. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer.
    Leipe DD; Koonin EV; Aravind L
    J Mol Biol; 2004 Oct; 343(1):1-28. PubMed ID: 15381417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes.
    Rochette NC; Brochier-Armanet C; Gouy M
    Mol Biol Evol; 2014 Apr; 31(4):832-45. PubMed ID: 24398320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Early evolution of the biotin-dependent carboxylase family.
    Lombard J; Moreira D
    BMC Evol Biol; 2011 Aug; 11():232. PubMed ID: 21827699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily.
    Leonard CJ; Aravind L; Koonin EV
    Genome Res; 1998 Oct; 8(10):1038-47. PubMed ID: 9799791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The UlaG protein family defines novel structural and functional motifs grafted on an ancient RNase fold.
    Fernandez FJ; Garces F; López-Estepa M; Aguilar J; Baldomà L; Coll M; Badia J; Vega MC
    BMC Evol Biol; 2011 Sep; 11():273. PubMed ID: 21943130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of β-Carbonic Anhydrase Genes in Bacterial Genomic Islands and Their Horizontal Transfer to Protists.
    Zolfaghari Emameh R; Barker HR; Hytönen VP; Parkkila S
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802189
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea.
    Koonin EV; Mushegian AR; Galperin MY; Walker DR
    Mol Microbiol; 1997 Aug; 25(4):619-37. PubMed ID: 9379893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of bacterial recombinase A (recA) in eukaryotes explained by addition of genomic data of key microbial lineages.
    Hofstatter PG; Tice AK; Kang S; Brown MW; Lahr DJ
    Proc Biol Sci; 2016 Oct; 283(1840):. PubMed ID: 27708147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Horizontal gene transfer and archaeal origin of deoxyhypusine synthase homologous genes in bacteria.
    Brochier C; López-García P; Moreira D
    Gene; 2004 Apr; 330():169-76. PubMed ID: 15087136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A molecular timeline for the origin of photosynthetic eukaryotes.
    Yoon HS; Hackett JD; Ciniglia C; Pinto G; Bhattacharya D
    Mol Biol Evol; 2004 May; 21(5):809-18. PubMed ID: 14963099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.
    Oborník M; Green BR
    Mol Biol Evol; 2005 Dec; 22(12):2343-53. PubMed ID: 16093570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Presence of a bacterial-like citrate synthase gene in Tetrahymena thermophila: recent lateral gene transfers (LGT) or multiple gene losses subsequent to a single ancient LGT?
    Mukai A; Endoh H
    J Mol Evol; 2004 May; 58(5):540-9. PubMed ID: 15170257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of two-component signal transduction.
    Koretke KK; Lupas AN; Warren PV; Rosenberg M; Brown JR
    Mol Biol Evol; 2000 Dec; 17(12):1956-70. PubMed ID: 11110912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Horizontal transfer of bacterial polyphosphate kinases to eukaryotes: implications for the ice age and land colonisation.
    Whitehead MP; Hooley P; W Brown MR
    BMC Res Notes; 2013 Jun; 6():221. PubMed ID: 23738841
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple Origins of Eukaryotic cox15 Suggest Horizontal Gene Transfer from Bacteria to Jakobid Mitochondrial DNA.
    He D; Fu CJ; Baldauf SL
    Mol Biol Evol; 2016 Jan; 33(1):122-33. PubMed ID: 26412445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The deep archaeal roots of eukaryotes.
    Yutin N; Makarova KS; Mekhedov SL; Wolf YI; Koonin EV
    Mol Biol Evol; 2008 Aug; 25(8):1619-30. PubMed ID: 18463089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phylogenetic analysis of the triterpene cyclase protein family in prokaryotes and eukaryotes suggests bidirectional lateral gene transfer.
    Frickey T; Kannenberg E
    Environ Microbiol; 2009 May; 11(5):1224-41. PubMed ID: 19207562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Okadaic acid and microcystin insensitive PPP-family phosphatases may represent novel biotechnology targets.
    Uhrig RG; Moorhead GB
    Plant Signal Behav; 2011 Dec; 6(12):2057-9. PubMed ID: 22112445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conserved sequence motifs among bacterial, eukaryotic, and archaeal phosphatases that define a new phosphohydrolase superfamily.
    Thaller MC; Schippa S; Rossolini GM
    Protein Sci; 1998 Jul; 7(7):1647-52. PubMed ID: 9684901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.