These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 24108240)
1. A 3D mesoporous polysulfone-carbon nanotube anode for enhanced bioelectricity output in microbial fuel cells. Nguyen TH; Yu YY; Wang X; Wang JY; Song H Chem Commun (Camb); 2013 Nov; 49(91):10754-6. PubMed ID: 24108240 [TBL] [Abstract][Full Text] [Related]
2. Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells. Yu YY; Chen HL; Yong YC; Kim DH; Song H Chem Commun (Camb); 2011 Dec; 47(48):12825-7. PubMed ID: 22048750 [TBL] [Abstract][Full Text] [Related]
3. The utility of Shewanella japonica for microbial fuel cells. Biffinger JC; Fitzgerald LA; Ray R; Little BJ; Lizewski SE; Petersen ER; Ringeisen BR; Sanders WC; Sheehan PE; Pietron JJ; Baldwin JW; Nadeau LJ; Johnson GR; Ribbens M; Finkel SE; Nealson KH Bioresour Technol; 2011 Jan; 102(1):290-7. PubMed ID: 20663660 [TBL] [Abstract][Full Text] [Related]
4. A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Sun M; Zhang F; Tong ZH; Sheng GP; Chen YZ; Zhao Y; Chen YP; Zhou SY; Liu G; Tian YC; Yu HQ Biosens Bioelectron; 2010 Oct; 26(2):338-43. PubMed ID: 20801013 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells. Liao ZH; Sun JZ; Sun DZ; Si RW; Yong YC Bioresour Technol; 2015 Sep; 192():831-4. PubMed ID: 26094048 [TBL] [Abstract][Full Text] [Related]
6. A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Feng C; Ma L; Li F; Mai H; Lang X; Fan S Biosens Bioelectron; 2010 Feb; 25(6):1516-20. PubMed ID: 19889528 [TBL] [Abstract][Full Text] [Related]
7. Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions. Yang Y; Sun G; Guo J; Xu M Bioresour Technol; 2011 Jul; 102(14):7093-8. PubMed ID: 21571526 [TBL] [Abstract][Full Text] [Related]
8. Enhanced Shewanella biofilm promotes bioelectricity generation. Liu T; Yu YY; Deng XP; Ng CK; Cao B; Wang JY; Rice SA; Kjelleberg S; Song H Biotechnol Bioeng; 2015 Oct; 112(10):2051-9. PubMed ID: 25899863 [TBL] [Abstract][Full Text] [Related]
9. Enlargement of anode for enhanced simultaneous azo dye decolorization and power output in air-cathode microbial fuel cell. Sun J; Li Y; Hu Y; Hou B; Xu Q; Zhang Y; Li S Biotechnol Lett; 2012 Nov; 34(11):2023-9. PubMed ID: 22798039 [TBL] [Abstract][Full Text] [Related]
10. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode. Mink JE; Hussain MM ACS Nano; 2013 Aug; 7(8):6921-7. PubMed ID: 23899322 [TBL] [Abstract][Full Text] [Related]
11. [Microbial fuel cells as an alternative power supply]. Il'in VK; Smirnov IA; Soldatov PÉ; Korshunov DV; Tiurin-Kuz'min AIu; Starkova LV; Chumakov PE; Emel'ianova LK; Novikova LM; Debabov VG; Voeĭkova TA Aviakosm Ekolog Med; 2012; 46(1):62-7. PubMed ID: 22629587 [TBL] [Abstract][Full Text] [Related]
12. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Wang H; Wang G; Ling Y; Qian F; Song Y; Lu X; Chen S; Tong Y; Li Y Nanoscale; 2013 Nov; 5(21):10283-90. PubMed ID: 24057049 [TBL] [Abstract][Full Text] [Related]
13. Multi-walled carbon nanotubes as electrode material for microbial fuel cells. Thepsuparungsikul N; Phonthamachai N; Ng HY Water Sci Technol; 2012; 65(7):1208-14. PubMed ID: 22437017 [TBL] [Abstract][Full Text] [Related]
14. Anode modification by biogenic gold nanoparticles for the improved performance of microbial fuel cells and microbial community shift. Wu X; Xiong X; Owens G; Brunetti G; Zhou J; Yong X; Xie X; Zhang L; Wei P; Jia H Bioresour Technol; 2018 Dec; 270():11-19. PubMed ID: 30199701 [TBL] [Abstract][Full Text] [Related]
15. Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs. Wu D; Xing D; Lu L; Wei M; Liu B; Ren N Bioresour Technol; 2013 May; 135():630-4. PubMed ID: 23127834 [TBL] [Abstract][Full Text] [Related]
16. Different types of carbon nanotube-based anodes to improve microbial fuel cell performance. Thepsuparungsikul N; Ng TC; Lefebvre O; Ng HY Water Sci Technol; 2014; 69(9):1900-10. PubMed ID: 24804666 [TBL] [Abstract][Full Text] [Related]
17. Microorganism-immobilized carbon nanoparticle anode for microbial fuel cells based on direct electron transfer. Yuan Y; Zhou S; Xu N; Zhuang L Appl Microbiol Biotechnol; 2011 Mar; 89(5):1629-35. PubMed ID: 21120470 [TBL] [Abstract][Full Text] [Related]
18. Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells. Kitayama M; Koga R; Kasai T; Kouzuma A; Watanabe K Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625998 [TBL] [Abstract][Full Text] [Related]
19. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system. Chung K; Okabe S Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation. Higgins SR; Foerster D; Cheung A; Lau C; Bretschger O; Minteer SD; Nealson K; Atanassov P; Cooney MJ Enzyme Microb Technol; 2011 May; 48(6-7):458-65. PubMed ID: 22113017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]