These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 24108419)
1. Decoration of electrospun nanofibers with monomeric catechols to facilitate cell adhesion. Choi JS; Messersmith PB; Yoo HS Macromol Biosci; 2014 Feb; 14(2):270-9. PubMed ID: 24108419 [TBL] [Abstract][Full Text] [Related]
2. Surface functionalized electrospun biodegradable nanofibers for immobilization of bioactive molecules. Kim TG; Park TG Biotechnol Prog; 2006; 22(4):1108-13. PubMed ID: 16889387 [TBL] [Abstract][Full Text] [Related]
3. Preparation and study of the antibacterial ability of graphene oxide-catechol hybrid polylactic acid nanofiber mats. Zhang Q; Tu Q; Hickey ME; Xiao J; Gao B; Tian C; Heng P; Jiao Y; Peng T; Wang J Colloids Surf B Biointerfaces; 2018 Dec; 172():496-505. PubMed ID: 30205340 [TBL] [Abstract][Full Text] [Related]
4. Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. Loh XJ; Peh P; Liao S; Sng C; Li J J Control Release; 2010 Apr; 143(2):175-82. PubMed ID: 20064568 [TBL] [Abstract][Full Text] [Related]
5. Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates. Lee H; Lee KD; Pyo KB; Park SY; Lee H Langmuir; 2010 Mar; 26(6):3790-3. PubMed ID: 20148541 [TBL] [Abstract][Full Text] [Related]
6. Plasma treatment of electrospun PCL random nanofiber meshes (NFMs) for biological property improvement. Yan D; Jones J; Yuan XY; Xu XH; Sheng J; Lee JC; Ma GQ; Yu QS J Biomed Mater Res A; 2013 Apr; 101(4):963-72. PubMed ID: 22965926 [TBL] [Abstract][Full Text] [Related]
7. Preparation of curcumin loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanofibers and their in vitro antitumor activity against Glioma 9L cells. Guo G; Fu S; Zhou L; Liang H; Fan M; Luo F; Qian Z; Wei Y Nanoscale; 2011 Sep; 3(9):3825-32. PubMed ID: 21847493 [TBL] [Abstract][Full Text] [Related]
8. Poly(ε-caprolactone) nanofibers with a self-induced nanohybrid shish-kebab structure mimicking collagen fibrils. Wang X; Salick MR; Wang X; Cordie T; Han W; Peng Y; Li Q; Turng LS Biomacromolecules; 2013 Oct; 14(10):3557-69. PubMed ID: 24010580 [TBL] [Abstract][Full Text] [Related]
10. Development of electroactive and elastic nanofibers that contain polyaniline and poly(L-lactide-co-epsilon-caprolactone) for the control of cell adhesion. Jeong SI; Jun ID; Choi MJ; Nho YC; Lee YM; Shin H Macromol Biosci; 2008 Jul; 8(7):627-37. PubMed ID: 18401867 [TBL] [Abstract][Full Text] [Related]
11. Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device. Song W; Yu X; Markel DC; Shi T; Ren W Biofabrication; 2013 Sep; 5(3):035006. PubMed ID: 23799653 [TBL] [Abstract][Full Text] [Related]
12. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Ku SH; Park CB Biomaterials; 2010 Dec; 31(36):9431-7. PubMed ID: 20880578 [TBL] [Abstract][Full Text] [Related]
13. Bioinspired templating synthesis of metal-polymer hybrid nanostructures within 3D electrospun nanofibers. Son HY; Ryu JH; Lee H; Nam YS ACS Appl Mater Interfaces; 2013 Jul; 5(13):6381-90. PubMed ID: 23802857 [TBL] [Abstract][Full Text] [Related]
14. Electrospun Nanofibrous Sheets for Selective Cell Capturing in Continuous Flow in Microchannels. Son YJ; Kang J; Kim HS; Yoo HS Biomacromolecules; 2016 Mar; 17(3):1067-74. PubMed ID: 26812501 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Zhang YZ; Venugopal J; Huang ZM; Lim CT; Ramakrishna S Biomacromolecules; 2005; 6(5):2583-9. PubMed ID: 16153095 [TBL] [Abstract][Full Text] [Related]
16. Micropatterning and characterization of electrospun poly(ε-caprolactone)/gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications. Lim YC; Johnson J; Fei Z; Wu Y; Farson DF; Lannutti JJ; Choi HW; Lee LJ Biotechnol Bioeng; 2011 Jan; 108(1):116-26. PubMed ID: 20812254 [TBL] [Abstract][Full Text] [Related]
17. Biocompatibility of poly(epsilon-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation. Hsu SH; Tang CM; Lin CC Biomaterials; 2004 Nov; 25(25):5593-601. PubMed ID: 15159075 [TBL] [Abstract][Full Text] [Related]
18. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Choi JS; Leong KW; Yoo HS Biomaterials; 2008 Feb; 29(5):587-96. PubMed ID: 17997153 [TBL] [Abstract][Full Text] [Related]
19. Mixture of PLA-PEG and biotinylated albumin enables immobilization of avidins on electrospun fibers. Kumar M; Rahikainen R; Unruh D; Hytönen VP; Delbrück C; Sindelar R; Renz F J Biomed Mater Res A; 2017 Feb; 105(2):356-362. PubMed ID: 27684712 [TBL] [Abstract][Full Text] [Related]
20. Dual functionalization of poly(ε-caprolactone) film surface through supramolecular assembly with the aim of promoting in situ endothelial progenitor cell attachment on vascular grafts. Ji Q; Zhang S; Zhang J; Wang Z; Wang J; Cui Y; Pang L; Wang S; Kong D; Zhao Q Biomacromolecules; 2013 Nov; 14(11):4099-107. PubMed ID: 24093508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]