BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24108471)

  • 1. Brain neoplasms and coagulation.
    Magnus N; D'Asti E; Garnier D; Meehan B; Rak J
    Semin Thromb Hemost; 2013 Nov; 39(8):881-95. PubMed ID: 24108471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oncogenes and the coagulation system--forces that modulate dormant and aggressive states in cancer.
    Magnus N; D'Asti E; Meehan B; Garnier D; Rak J
    Thromb Res; 2014 May; 133 Suppl 2():S1-9. PubMed ID: 24862126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological basis of personalized anticoagulation in cancer: oncogene and oncomir networks as putative regulators of coagulopathy.
    D'Asti E; Rak J
    Thromb Res; 2016 Apr; 140 Suppl 1():S37-43. PubMed ID: 27067976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oncogenic regulation of tissue factor and thrombosis in cancer.
    Anand M; Brat DJ
    Thromb Res; 2012 Apr; 129 Suppl 1():S46-9. PubMed ID: 22682132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of tumor-and host-related tissue factor pools in oncogene-driven tumor progression.
    Milsom C; Yu J; May L; Meehan B; Magnus N; Al-Nedawi K; Luyendyk J; Weitz J; Klement P; Broze G; Mackman N; Rak J
    Thromb Res; 2007; 120 Suppl 2():S82-91. PubMed ID: 18023719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain neoplasms and coagulation-lessons from heterogeneity.
    D'Asti E; Fang Y; Rak J
    Rambam Maimonides Med J; 2014 Oct; 5(4):e0030. PubMed ID: 25386346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic determinants of cancer coagulopathy, angiogenesis and disease progression.
    Rak J; Klement P; Yu J
    Vnitr Lek; 2006 Mar; 52 Suppl 1():135-8. PubMed ID: 16637463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue factor in cancer and angiogenesis: the molecular link between genetic tumor progression, tumor neovascularization, and cancer coagulopathy.
    Rak J; Milsom C; May L; Klement P; Yu J
    Semin Thromb Hemost; 2006 Feb; 32(1):54-70. PubMed ID: 16479463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of tumor and host tissue factor expression to oncogene-driven gliomagenesis.
    Magnus N; Meehan B; Garnier D; Hashemi M; Montermini L; Lee TH; Milsom C; Pawlinski R; Ohlfest J; Anderson M; Mackman N; Rak J
    Biochem Biophys Res Commun; 2014 Nov; 454(2):262-8. PubMed ID: 25450387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue factor and cancer stem cells: is there a linkage?
    Milsom C; Magnus N; Meehan B; Al-Nedawi K; Garnier D; Rak J
    Arterioscler Thromb Vasc Biol; 2009 Dec; 29(12):2005-14. PubMed ID: 19628788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coagulation and angiogenic gene expression profiles are defined by molecular subgroups of medulloblastoma: evidence for growth factor-thrombin cross-talk.
    D'Asti E; Kool M; Pfister SM; Rak J
    J Thromb Haemost; 2014 Nov; 12(11):1838-49. PubMed ID: 25163932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular determinants of cancer stem cell dormancy--do age and coagulation system play a role?
    Rak J; Milsom C; Yu J
    APMIS; 2008; 116(7-8):660-76. PubMed ID: 18834410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic pathways linking hemostasis and cancer.
    Garnier D; Magnus N; D'Asti E; Hashemi M; Meehan B; Milsom C; Rak J
    Thromb Res; 2012 Apr; 129 Suppl 1():S22-9. PubMed ID: 22682129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the tissue factor pathway in the biology of tumor initiating cells.
    Garnier D; Milsom C; Magnus N; Meehan B; Weitz J; Yu J; Rak J
    Thromb Res; 2010 Apr; 125 Suppl 2():S44-50. PubMed ID: 20434004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circulating microparticles of glial origin and tissue factor bearing in high-grade glioma: a potential prothrombotic role.
    Sartori MT; Della Puppa A; Ballin A; Campello E; Radu CM; Saggiorato G; d'Avella D; Scienza R; Cella G; Simioni P
    Thromb Haemost; 2013 Aug; 110(2):378-85. PubMed ID: 23803674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of vascular endothelial growth factor isoforms drives oxygenation and growth but not progression to glioblastoma multiforme in a human model of gliomagenesis.
    Sonoda Y; Kanamori M; Deen DF; Cheng SY; Berger MS; Pieper RO
    Cancer Res; 2003 Apr; 63(8):1962-8. PubMed ID: 12702589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 'Pseudopalisading' necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis.
    Rong Y; Durden DL; Van Meir EG; Brat DJ
    J Neuropathol Exp Neurol; 2006 Jun; 65(6):529-39. PubMed ID: 16783163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma.
    Rempel SA; Dudas S; Ge S; GutiƩrrez JA
    Clin Cancer Res; 2000 Jan; 6(1):102-11. PubMed ID: 10656438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diverse roles of tissue factor-expressing cell subsets in tumor progression.
    Milsom C; Yu J; May L; Magnus N; Rak J
    Semin Thromb Hemost; 2008 Mar; 34(2):170-81. PubMed ID: 18645922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active matrix metalloproteinase 9 expression is associated with primary glioblastoma subtype.
    Choe G; Park JK; Jouben-Steele L; Kremen TJ; Liau LM; Vinters HV; Cloughesy TF; Mischel PS
    Clin Cancer Res; 2002 Sep; 8(9):2894-901. PubMed ID: 12231534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.