These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 24108573)

  • 1. Multimodal tissue imaging: using coregistered optical tomography data to estimate tissue autofluorescence intensity change due to scattering and absorption by neoplastic epithelial cells.
    Pahlevaninezhad H; Cecic I; Lee AM; Kyle AH; Lam S; MacAulay C; Lane PM
    J Biomed Opt; 2013 Oct; 18(10):106007. PubMed ID: 24108573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coregistered autofluorescence-optical coherence tomography imaging of human lung sections.
    Pahlevaninezhad H; Lee AM; Lam S; MacAulay C; Lane PM
    J Biomed Opt; 2014 Mar; 19(3):36022. PubMed ID: 24687614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MULTIMODAL IMAGING OF DISEASE-ASSOCIATED PIGMENTARY CHANGES IN RETINITIS PIGMENTOSA.
    Schuerch K; Marsiglia M; Lee W; Tsang SH; Sparrow JR
    Retina; 2016 Dec; 36 Suppl 1(Suppl 1):S147-S158. PubMed ID: 28005673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scattering attenuation microscopy of oral epithelial dysplasia.
    Tomlins PH; Adegun O; Hagi-Pavli E; Piper K; Bader D; Fortune F
    J Biomed Opt; 2010; 15(6):066003. PubMed ID: 21198177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging.
    Lichtenegger A; Gesperger J; Kiesel B; Muck M; Eugui P; Harper DJ; Salas M; Augustin M; Merkle CW; Hitzenberger CK; Widhalm G; Woehrer A; Baumann B
    J Biomed Opt; 2019 Jun; 24(6):1-11. PubMed ID: 31240898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence lifetime imaging of the ocular fundus in mice.
    Dysli C; Dysli M; Enzmann V; Wolf S; Zinkernagel MS
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(11):7206-15. PubMed ID: 25249601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the progression rate of atrophy lesions in punctate inner choroidopathy (PIC) based on autofluorescence analysis.
    Hua R; Liu L; Chen L
    Photodiagnosis Photodyn Ther; 2014 Dec; 11(4):565-9. PubMed ID: 25046400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction of motion artifacts in endoscopic optical coherence tomography and autofluorescence images based on azimuthal en face image registration.
    Abouei E; Lee AMD; Pahlevaninezhad H; Hohert G; Cua M; Lane P; Lam S; MacAulay C
    J Biomed Opt; 2018 Jan; 23(1):1-13. PubMed ID: 29302954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies.
    Turchin IV; Sergeeva EA; Dolin LS; Kamensky VA; Shakhova NM; Richards-Kortum R
    J Biomed Opt; 2005; 10(6):064024. PubMed ID: 16409089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DISCORDANCE BETWEEN BLUE-LIGHT AUTOFLUORESCENCE AND NEAR-INFRARED AUTOFLUORESCENCE IN AGE-RELATED MACULAR DEGENERATION.
    Heiferman MJ; Fawzi AA
    Retina; 2016 Dec; 36 Suppl 1(Suppl 1):S137-S146. PubMed ID: 28005672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo simultaneous morphological and biochemical optical imaging of oral epithelial cancer.
    Jo JA; Applegate BE; Park J; Shrestha S; Pande P; Gimenez-Conti IB; Brandon JL
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2596-9. PubMed ID: 20656649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EN FACE OPTICAL COHERENCE TOMOGRAPHY AND OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF MULTIPLE EVANESCENT WHITE DOT SYNDROME: New Insights Into Pathogenesis.
    Pichi F; Srvivastava SK; Chexal S; Lembo A; Lima LH; Neri P; Saitta A; Chhablani J; Albini TA; Nucci P; Freund KB; Chung H; Lowder CY; Sarraf D
    Retina; 2016 Dec; 36 Suppl 1():S178-S188. PubMed ID: 28005676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared and short-wave autofluorescence in ocular specimens.
    Oguchi Y; Sekiryu T; Takasumi M; Hashimoto Y; Furuta M
    Jpn J Ophthalmol; 2018 Sep; 62(5):605-613. PubMed ID: 30073488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues.
    Li Z; Li H; He Y; Cai S; Xie S
    Phys Med Biol; 2008 Oct; 53(20):5859-66. PubMed ID: 18827323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study.
    Sung KB; Chen HH
    J Biomed Opt; 2012 Oct; 17(10):107003. PubMed ID: 23047254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced modelling of optical coherence tomography systems.
    Andersen PE; Thrane L; Yura HT; Tycho A; Jørgensen TM; Frosz MH
    Phys Med Biol; 2004 Apr; 49(7):1307-27. PubMed ID: 15128207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-widefield imaging with autofluorescence and indocyanine green angiography in central serous chorioretinopathy.
    Pang CE; Shah VP; Sarraf D; Freund KB
    Am J Ophthalmol; 2014 Aug; 158(2):362-371.e2. PubMed ID: 24794091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma.
    Arifler D; Pavlova I; Gillenwater A; Richards-Kortum R
    Biophys J; 2007 May; 92(9):3260-74. PubMed ID: 17307834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase retrieval deblurring for imaging of dense object within a low scattering soft biological tissue.
    Sahlev MA; Rivenson Y; Meiri A; Zalevsky Z
    J Biomed Opt; 2016 Sep; 21(9):96008. PubMed ID: 27637006
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.