These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24108628)

  • 1. Analysis of time-dependent red shifts in fluorescence emission from tryptophan residues in proteins.
    Toptygin D
    Methods Mol Biol; 2014; 1076():215-56. PubMed ID: 24108628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanosecond relaxation dynamics of protein GB1 identified by the time-dependent red shift in the fluorescence of tryptophan and 5-fluorotryptophan.
    Toptygin D; Gronenborn AM; Brand L
    J Phys Chem B; 2006 Dec; 110(51):26292-302. PubMed ID: 17181288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic insight into protein structure utilizing red edge excitation shift.
    Chattopadhyay A; Haldar S
    Acc Chem Res; 2014 Jan; 47(1):12-9. PubMed ID: 23981188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease.
    Demchenko AP; Gryczynski I; Gryczynski Z; Wiczk W; Malak H; Fishman M
    Biophys Chem; 1993 Nov; 48(1):39-48. PubMed ID: 8257766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations.
    Dashnau JL; Zelent B; Vanderkooi JM
    Biophys Chem; 2005 Apr; 114(1):71-83. PubMed ID: 15792863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence decay characteristics of indole compounds revealed by time-resolved area-normalized emission spectroscopy.
    Otosu T; Nishimoto E; Yamashita S
    J Phys Chem A; 2009 Mar; 113(12):2847-53. PubMed ID: 19254015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments.
    Storch EM; Grinstead JS; Campbell AP; Daggett V; Atkins WM
    Biochemistry; 1999 Apr; 38(16):5065-75. PubMed ID: 10213609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins.
    Tayeh N; Rungassamy T; Albani JR
    J Pharm Biomed Anal; 2009 Sep; 50(2):107-16. PubMed ID: 19473803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red-edge-excitation fluorescence spectroscopy of indole and tryptophan.
    Demchenko AP; Ladokhin AS
    Eur Biophys J; 1988; 15(6):369-79. PubMed ID: 3371274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavelength-resolved fluorescence emission of proteins using the synchrotron radiation as pulsed-light source: cross-correlations between lifetimes, rotational correlation times and tryptophan heterogeneity in FKBP59 immunophilin.
    Vincent M; Rouvière N; Gallay J
    Cell Mol Biol (Noisy-le-grand); 2000 Sep; 46(6):1113-31. PubMed ID: 10976868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy.
    Jia M; Yi H; Chang M; Cao X; Li L; Zhou Z; Pan H; Chen Y; Zhang S; Xu J
    J Photochem Photobiol B; 2015 Aug; 149():243-8. PubMed ID: 26111991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting Nanosecond Dynamics in Membrane Proteins with Dipolar Relaxation upon Tryptophan Photoexcitation.
    Frotscher E; Krainer G; Schlierf M; Keller S
    J Phys Chem Lett; 2018 May; 9(9):2241-2245. PubMed ID: 29652505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation of tryptophan fluorescence spectral shifts and lifetimes arising directly from heterogeneous environment.
    Pan CP; Muiño PL; Barkley MD; Callis PR
    J Phys Chem B; 2011 Mar; 115(12):3245-53. PubMed ID: 21370844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Existence of a new emitting singlet state of proflavine: femtosecond dynamics of the excited state processes and quantum chemical studies in different solvents.
    Kumar KS; Selvaraju C; Malar EJ; Natarajan P
    J Phys Chem A; 2012 Jan; 116(1):37-45. PubMed ID: 22145576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red-edge excitation fluorescence measurements of several two-tryptophan-containing proteins.
    Wasylewski Z; Kołoczek H; Waśniowska A; Slizowska K
    Eur J Biochem; 1992 May; 206(1):235-42. PubMed ID: 1587274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociation of a strong acid in neat solvents: diffusion is observed after reversible proton ejection inside the solvent shell.
    Veiga-Gutiérrez M; Brenlla A; Carreira Blanco C; Fernández B; Kovalenko SA; Rodríguez-Prieto F; Mosquera M; Lustres JL
    J Phys Chem B; 2013 Nov; 117(45):14065-78. PubMed ID: 24083378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Picosecond protein dynamics: the origin of the time-dependent spectral shift in the fluorescence of the single Trp in the protein GB1.
    Toptygin D; Woolf TB; Brand L
    J Phys Chem B; 2010 Sep; 114(34):11323-37. PubMed ID: 20701310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxation dynamics of tryptophan in water: A UV fluorescence up-conversion and molecular dynamics study.
    Bräm O; Oskouei AA; Tortschanoff A; van Mourik F; Madrid M; Echave J; Cannizzo A; Chergui M
    J Phys Chem A; 2010 Sep; 114(34):9034-42. PubMed ID: 20698563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On spectral relaxation in proteins.
    Lakowicz JR
    Photochem Photobiol; 2000 Oct; 72(4):421-37. PubMed ID: 11045710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Intrinsic luminescence of protein as a tool for studying fast structural dynamics].
    Burshteĭn EA
    Mol Biol (Mosk); 1983; 17(3):455-67. PubMed ID: 6877227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.