These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 24108799)

  • 1. Neural conflict-control mechanisms improve memory for target stimuli.
    Krebs RM; Boehler CN; De Belder M; Egner T
    Cereb Cortex; 2015 Mar; 25(3):833-43. PubMed ID: 24108799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anterior cingulate cortex: an fMRI analysis of conflict specificity and functional differentiation.
    Milham MP; Banich MT
    Hum Brain Mapp; 2005 Jul; 25(3):328-35. PubMed ID: 15834861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proactive and reactive control during emotional interference and its relationship to trait anxiety.
    Krug MK; Carter CS
    Brain Res; 2012 Oct; 1481():13-36. PubMed ID: 22960116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of the caudal anterior cingulate cortex due to task-related interference in an auditory Stroop paradigm.
    Haupt S; Axmacher N; Cohen MX; Elger CE; Fell J
    Hum Brain Mapp; 2009 Sep; 30(9):3043-56. PubMed ID: 19180558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neural mechanism of cognitive control for resolving conflict between abstract task rules.
    Sheu YS; Courtney SM
    Cortex; 2016 Dec; 85():13-24. PubMed ID: 27771559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turning down the heat: Neural mechanisms of cognitive control for inhibiting task-irrelevant emotional information during adolescence.
    Banich MT; Smolker HR; Snyder HR; Lewis-Peacock JA; Godinez DA; Wager TD; Hankin BL
    Neuropsychologia; 2019 Mar; 125():93-108. PubMed ID: 30615898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal patterns of cognitive control revealed with simultaneous electroencephalography and functional magnetic resonance imaging.
    Hinault T; Larcher K; Zazubovits N; Gotman J; Dagher A
    Hum Brain Mapp; 2019 Jan; 40(1):80-97. PubMed ID: 30259592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common regions of dorsal anterior cingulate and prefrontal-parietal cortices provide attentional control of distracters varying in emotionality and visibility.
    Luo Q; Mitchell D; Jones M; Mondillo K; Vythilingam M; Blair RJ
    Neuroimage; 2007 Nov; 38(3):631-9. PubMed ID: 17889565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orchestrating Proactive and Reactive Mechanisms for Filtering Distracting Information: Brain-Behavior Relationships Revealed by a Mixed-Design fMRI Study.
    Marini F; Demeter E; Roberts KC; Chelazzi L; Woldorff MG
    J Neurosci; 2016 Jan; 36(3):988-1000. PubMed ID: 26791226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural correlates of cognitive style and flexible cognitive control.
    Shin G; Kim C
    Neuroimage; 2015 Jun; 113():78-85. PubMed ID: 25812714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conflict adaptation in prefrontal cortex: now you see it, now you don't.
    Kim C; Johnson NF; Gold BT
    Cortex; 2014 Jan; 50():76-85. PubMed ID: 24074459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neural mechanisms of semantic and response conflicts: an fMRI study of practice-related effects in the Stroop task.
    Chen Z; Lei X; Ding C; Li H; Chen A
    Neuroimage; 2013 Feb; 66():577-84. PubMed ID: 23103691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural correlates of distance and congruity effects in a numerical Stroop task: an event-related fMRI study.
    Kaufmann L; Koppelstaetter F; Delazer M; Siedentopf C; Rhomberg P; Golaszewski S; Felber S; Ischebeck A
    Neuroimage; 2005 Apr; 25(3):888-98. PubMed ID: 15808989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthogonal neural encoding of targets and distractors supports multivariate cognitive control.
    Ritz H; Shenhav A
    Nat Hum Behav; 2024 May; 8(5):945-961. PubMed ID: 38459265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cognitive and brain consequences of conflict.
    Fan J; Flombaum JI; McCandliss BD; Thomas KM; Posner MI
    Neuroimage; 2003 Jan; 18(1):42-57. PubMed ID: 12507442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.
    Melcher T; Gruber O
    Cortex; 2009 Feb; 45(2):189-200. PubMed ID: 19150520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neural correlates and functional integration of cognitive control in a Stroop task.
    Egner T; Hirsch J
    Neuroimage; 2005 Jan; 24(2):539-47. PubMed ID: 15627596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Common and specific brain regions in high- versus low-confidence recognition memory.
    Kim H; Cabeza R
    Brain Res; 2009 Jul; 1282():103-13. PubMed ID: 19501072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulations of the executive control network by stimulus onset asynchrony in a Stroop task.
    Coderre EL; van Heuven WJ
    BMC Neurosci; 2013 Jul; 14():79. PubMed ID: 23902451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Representational Similarity Analysis of Cognitive Control during Color-Word Stroop.
    Freund MC; Bugg JM; Braver TS
    J Neurosci; 2021 Sep; 41(35):7388-7402. PubMed ID: 34162756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.