These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 2410909)
1. Kinetics of redox-linked proton pumping activity of native and subunit III-depleted cytochrome c oxidase: a stopped-flow investigation. Sarti P; Jones MG; Antonini G; Malatesta F; Colosimo A; Wilson MT; Brunori M Proc Natl Acad Sci U S A; 1985 Aug; 82(15):4876-80. PubMed ID: 2410909 [TBL] [Abstract][Full Text] [Related]
2. Stopped-flow studies of cytochrome oxidase reconstituted into liposomes: proton pumping and control of activity. Brunori M; Antonini G; Colosimo A; Malatesta F; Sarti P; Jones MG; Wilson MT J Inorg Biochem; 1985; 23(3-4):373-9. PubMed ID: 2410570 [TBL] [Abstract][Full Text] [Related]
3. Phospholipid vesicles containing bovine heart mitochondrial cytochrome c oxidase and subunit III-deficient enzyme: analysis of respiratory control and proton translocating activities. Wilson KS; Prochaska LJ Arch Biochem Biophys; 1990 Nov; 282(2):413-20. PubMed ID: 2173485 [TBL] [Abstract][Full Text] [Related]
4. Cytochrome c oxidase depleted of subunit III: proton-pumping, respiratory control, and pH dependence of the midpoint potential of cytochrome a. Thompson DA; Gregory L; Ferguson-Miller S J Inorg Biochem; 1985; 23(3-4):357-64. PubMed ID: 2410568 [TBL] [Abstract][Full Text] [Related]
5. pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of cytochrome c oxidase. The role of H2O produced at the oxygen-reduction site. Capitanio G; Martino PL; Capitanio N; De Nitto E; Papa S Biochemistry; 2006 Feb; 45(6):1930-7. PubMed ID: 16460039 [TBL] [Abstract][Full Text] [Related]
6. The mechanism of proton translocation by the cytochrome system of mitochondria. Characterization of proton-transfer reactions associated with oxidoreductions of terminal respiratory carriers. Papa S; Guerrieri F; Izzo G Biochem J; 1983 Nov; 216(2):259-72. PubMed ID: 6318731 [TBL] [Abstract][Full Text] [Related]
7. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase. Lorusso M; Capuano F; Boffoli D; Stefanelli R; Papa S Biochem J; 1979 Jul; 182(1):133-47. PubMed ID: 40546 [TBL] [Abstract][Full Text] [Related]
8. Characteristics of the redox-linked proton ejection in beef-heart cytochrome c oxidase reconstituted in liposomes. Papa S; Capitanio N; De Nitto E Eur J Biochem; 1987 May; 164(3):507-16. PubMed ID: 3032620 [TBL] [Abstract][Full Text] [Related]
9. Factors affecting the H+/e- stoichiometry in mitochondrial cytochrome c oxidase: influence of the rate of electron flow and transmembrane delta pH. Capitanio N; Capitanio G; Demarinis DA; De Nitto E; Massari S; Papa S Biochemistry; 1996 Aug; 35(33):10800-6. PubMed ID: 8718871 [TBL] [Abstract][Full Text] [Related]
10. Pumping of protons from the mitochondrial matrix by cytochrome oxidase. Wikström M Nature; 1984 Apr 5-11; 308(5959):558-60. PubMed ID: 6324002 [TBL] [Abstract][Full Text] [Related]
11. Characterization of electron-transfer and proton-translocation activities in bovine heart mitochondrial cytochrome c oxidase deficient in subunit III. Prochaska LJ; Reynolds KA Biochemistry; 1986 Feb; 25(4):781-7. PubMed ID: 3008812 [TBL] [Abstract][Full Text] [Related]
12. Redox-linked proton translocation in the b-c1 complex from beef-heart mitochondria reconstituted into phospholipid vesicles. General characteristics and control of electron flow by delta micro H+. Papa S; Lorusso M; Boffoli D; Bellomo E Eur J Biochem; 1983 Dec; 137(3):405-12. PubMed ID: 6319123 [TBL] [Abstract][Full Text] [Related]
13. Characteristics of the protonmotive activity of mammalian cytochrome c oxidase and their modification by amino acid reagents. Papa S; Capitanio N; Steverding D Ann N Y Acad Sci; 1988; 550():238-53. PubMed ID: 2854396 [TBL] [Abstract][Full Text] [Related]
14. Proton-translocating cytochrome c oxidase in artificial phospholipid vesicles. Krab K; Wikström M Biochim Biophys Acta; 1978 Oct; 504(1):200-14. PubMed ID: 30478 [TBL] [Abstract][Full Text] [Related]
15. Valinomycin binds stoichiometrically to cytochrome c oxidase and changes its structure and function. Steverding D; Kadenbach B Biochem Biophys Res Commun; 1989 May; 160(3):1132-9. PubMed ID: 2471518 [TBL] [Abstract][Full Text] [Related]
17. Cytochrome c oxidase: chemistry of a molecular machine. Musser SM; Stowell MH; Chan SI Adv Enzymol Relat Areas Mol Biol; 1995; 71():79-208. PubMed ID: 8644492 [TBL] [Abstract][Full Text] [Related]
18. On the stoichiometry and thermodynamics of proton-pumping cytochrome c oxidase in mitochondria. Krab K; Wikström M Biochim Biophys Acta; 1979 Oct; 548(1):1-15. PubMed ID: 39598 [TBL] [Abstract][Full Text] [Related]
19. Influence of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline modification on proton translocation and membrane potential of reconstituted cytochrome-c oxidase support "proton slippage". Steverding D; Kadenbach B J Biol Chem; 1991 May; 266(13):8097-101. PubMed ID: 1850736 [TBL] [Abstract][Full Text] [Related]
20. Structure and function of cytochrome-c oxidase. Denis M Biochimie; 1986 Mar; 68(3):459-70. PubMed ID: 2427124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]