These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2410932)

  • 1. Differences between mammalian ventral and dorsal spinal roots in response to blockade of potassium channels during maturation.
    Bowe CM; Kocsis JD; Waxman SG
    Proc R Soc Lond B Biol Sci; 1985 May; 224(1236):355-66. PubMed ID: 2410932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of 4-aminopyridine and tetraethylammonium ions on normal and demyelinated mammalian nerve fibres.
    Bostock H; Sears TA; Sherratt RM
    J Physiol; 1981; 313():301-15. PubMed ID: 7277221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional differences between 4-aminopyridine and tetraethylammonium-sensitive potassium channels in myelinated axons.
    Kocsis JD; Eng DL; Gordon TR; Waxman SG
    Neurosci Lett; 1987 Mar; 75(2):193-8. PubMed ID: 2437499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium channel blockade differentially affects the relative refractory period of frog afferent terminals and axons.
    Tkacs NC; Wurster RD
    Cell Mol Neurobiol; 1990 Sep; 10(3):405-21. PubMed ID: 2253263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological effects of 4-aminopyridine on demyelinated mammalian motor and sensory fibers.
    Bowe CM; Kocsis JD; Targ EF; Waxman SG
    Ann Neurol; 1987 Aug; 22(2):264-8. PubMed ID: 2821876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fictive locomotor patterns generated by tetraethylammonium application to the neonatal rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2006; 137(2):659-70. PubMed ID: 16289841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mammalian optic nerve fibers display two pharmacologically distinct potassium channels.
    Kocsis JD; Gordon TR; Waxman SG
    Brain Res; 1986 Sep; 383(1-2):357-61. PubMed ID: 2429732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the presence of two types of potassium channels in the rat optic nerve.
    Gordon TR; Kocsis JD; Waxman SG
    Brain Res; 1988 Apr; 447(1):1-9. PubMed ID: 2454699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic mechanisms of action of GABA on dorsal and ventral root myelinated fibers: effects of K+ channel blockers.
    Morris ME; Liske S
    Can J Physiol Pharmacol; 1989 Oct; 67(10):1308-14. PubMed ID: 2558787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of 4-AP and TEA sensitivities in mammalian myelinated nerve fibers.
    Eng DL; Gordon TR; Kocsis JD; Waxman SG
    J Neurophysiol; 1988 Dec; 60(6):2168-79. PubMed ID: 2853208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal entry route for ventral root afferent fibers in the cat.
    Shin HK; Kim J; Nam SC; Paik KS; Chung JM
    Exp Neurol; 1986 Dec; 94(3):714-25. PubMed ID: 3780916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in intramembranous particle distribution in the paranodal axolemma are not associated with functional differences of dorsal and ventral roots.
    Fields RD; Black JA; Bowe CM; Kocsis JD; Waxman SG
    Neurosci Lett; 1986 Jun; 67(1):13-8. PubMed ID: 2425295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of 4-aminopyridine on the cat spinal cord: rhythmic antidromic discharges recorded from the dorsal roots.
    Dubuc R; Rossignol S
    Brain Res; 1989 Jul; 491(2):335-48. PubMed ID: 2548666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity-related extracellular potassium transients in the neonatal rat spinal cord: an in vitro study.
    Walton KD; Chesler M
    Neuroscience; 1988 Jun; 25(3):983-95. PubMed ID: 2457188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABA-receptor-independent dorsal root afferents depolarization in the neonatal rat spinal cord.
    Kremer E; Lev-Tov A
    J Neurophysiol; 1998 May; 79(5):2581-92. PubMed ID: 9582230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased spike-frequency adaptation and tea sensitivity in dorsal root fibers after sciatic nerve injury.
    Utzschneider DA; Bhisitkhul RB; Kocsis JD
    Muscle Nerve; 1993 Sep; 16(9):958-63. PubMed ID: 8355727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve.
    Moldovan M; Sørensen J; Krarup C
    Brain; 2006 Sep; 129(Pt 9):2471-83. PubMed ID: 16905553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The Magendie law on spinal ventral and dorsal roots is still of current value].
    Hildebrand C; Risling M; Dalsgaard CJ
    Lakartidningen; 1989 Jul; 86(30-31):2597-9. PubMed ID: 2674573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in sensitivity to hyperglycemic hypoxia of isolated rat sensory and motor nerve fibers.
    Schneider U; Jund R; Nees S; Grafe P
    Ann Neurol; 1992 Jun; 31(6):605-10. PubMed ID: 1325137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium channel distribution in spinal root axons of dystrophic mice.
    Bostock H; Rasminsky M
    J Physiol; 1983 Jul; 340():145-56. PubMed ID: 6310095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.