These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 24109451)

  • 1. Learning indoor robot navigation using visual and sensorimotor map information.
    Yan W; Weber C; Wermter S
    Front Neurorobot; 2013; 7():15. PubMed ID: 24109451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Safe and Robust Mobile Robot Navigation in Uneven Indoor Environments.
    Wang C; Wang J; Li C; Ho D; Cheng J; Yan T; Meng L; Meng MQ
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SLAM algorithm applied to robotics assistance for navigation in unknown environments.
    Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R
    J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Social Robot Navigation Tasks: Combining Machine Learning Techniques and Social Force Model.
    Gil Ó; Garrell A; Sanfeliu A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning.
    Zhou X; Bai T; Gao Y; Han Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Navigation and Self-Semantic Location of Drones in Indoor Environments by Combining the Visual Bug Algorithm and Entropy-Based Vision.
    Maravall D; de Lope J; Fuentes JP
    Front Neurorobot; 2017; 11():46. PubMed ID: 28900394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning sensor-based navigation of a real mobile robot in unknown worlds.
    Araujo R; de Almeida AT
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(2):164-78. PubMed ID: 18252290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous Navigation System of Greenhouse Mobile Robot Based on 3D Lidar and 2D Lidar SLAM.
    Jiang S; Wang S; Yi Z; Zhang M; Lv X
    Front Plant Sci; 2022; 13():815218. PubMed ID: 35360319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scene perception based visual navigation of mobile robot in indoor environment.
    Ran T; Yuan L; Zhang JB
    ISA Trans; 2021 Mar; 109():389-400. PubMed ID: 33069374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of NAO Robot Maze Navigation Based on Computer Vision and Collaborative Learning.
    Magallán-Ramírez D; Martínez-Aguilar JD; Rodríguez-Tirado A; Balderas D; López-Caudana EO; Moreno-García CF
    Front Robot AI; 2022; 9():834021. PubMed ID: 35445082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.
    Grinke E; Tetzlaff C; Wörgötter F; Manoonpong P
    Front Neurorobot; 2015; 9():11. PubMed ID: 26528176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unknown Object Detection Using a One-Class Support Vector Machine for a Cloud-Robot System.
    Kabir R; Watanobe Y; Islam MR; Naruse K; Rahman MM
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-correction mechanism for path integration in a modular navigation system on the basis of an egocentric spatial map.
    Mudra R; Douglas RJ
    Neural Netw; 2003 Nov; 16(9):1373-88. PubMed ID: 14622890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomous Navigation by Mobile Robot with Sensor Fusion Based on Deep Reinforcement Learning.
    Ou Y; Cai Y; Sun Y; Qin T
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assistive Navigation Using Deep Reinforcement Learning Guiding Robot With UWB/Voice Beacons and Semantic Feedbacks for Blind and Visually Impaired People.
    Lu CL; Liu ZY; Huang JT; Huang CI; Wang BH; Chen Y; Wu NH; Wang HC; Giarré L; Kuo PY
    Front Robot AI; 2021; 8():654132. PubMed ID: 34239900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation.
    Wang D; Si W; Luo Y; Wang H; Ma T
    Network; 2019; 30(1-4):79-106. PubMed ID: 31564179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ROS-Based Autonomous Navigation Robot Platform with Stepping Motor.
    Zhao S; Hwang SH
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Analysis of 2-D Positioned, Indoor, Fuzzy-Logic, Autonomous Navigation System Based on Chromaticity and Frequency-Component Analysis of LED Light.
    Jeong JH; Park K
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research and Implementation of Autonomous Navigation for Mobile Robots Based on SLAM Algorithm under ROS.
    Zhao J; Liu S; Li J
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time map building and navigation for autonomous robots in unknown environments.
    Oriolo G; Ulivi G; Vendittelli M
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(3):316-33. PubMed ID: 18255950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.