These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24109451)

  • 21. An aerial–ground robotic system for navigation and obstacle mapping in large outdoor areas.
    Garzón M; Valente J; Zapata D; Barrientos A
    Sensors (Basel); 2013 Jan; 13(1):1247-67. PubMed ID: 23337332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid, safe, and incremental learning of navigation strategies.
    Millan JR
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(3):408-20. PubMed ID: 18263043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NeuroBayesSLAM: Neurobiologically inspired Bayesian integration of multisensory information for robot navigation.
    Zeng T; Tang F; Ji D; Si B
    Neural Netw; 2020 Jun; 126():21-35. PubMed ID: 32179391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multimodal cognitive interface for robot navigation.
    Elmogy M; Habel C; Zhang J
    Cogn Process; 2011 Feb; 12(1):53-65. PubMed ID: 21203798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Topological Frontier-Based Exploration and Map-Building Using Semantic Information.
    Gomez C; Hernandez AC; Barber R
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31652607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hitchhiking Robots: A Collaborative Approach for Efficient Multi-Robot Navigation in Indoor Environments.
    Ravankar A; Ravankar AA; Kobayashi Y; Emaru T
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28809803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Object Detection Applied to Indoor Environments for Mobile Robot Navigation.
    Hernández AC; Gómez C; Crespo J; Barber R
    Sensors (Basel); 2016 Jul; 16(8):. PubMed ID: 27483264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structured Kernel Subspace Learning for Autonomous Robot Navigation.
    Kim E; Choi S; Oh S
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29443897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hierarchical model of goal directed navigation selects trajectories in a visual environment.
    Erdem UM; Milford MJ; Hasselmo ME
    Neurobiol Learn Mem; 2015 Jan; 117():109-21. PubMed ID: 25079451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Symbiotic Navigation in Multi-Robot Systems with Remote Obstacle Knowledge Sharing.
    Ravankar A; Ravankar AA; Kobayashi Y; Emaru T
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28678193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reference frames in learning from maps and navigation.
    Meilinger T; Frankenstein J; Watanabe K; Bülthoff HH; Hölscher C
    Psychol Res; 2015 Nov; 79(6):1000-8. PubMed ID: 25416007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation.
    Omrane H; Masmoudi MS; Masmoudi M
    Comput Intell Neurosci; 2016; 2016():9548482. PubMed ID: 27688748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Autonomous robotic exploration with simultaneous environment and traversability models learning.
    Prágr M; Bayer J; Faigl J
    Front Robot AI; 2022; 9():910113. PubMed ID: 36274911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial abstraction for autonomous robot navigation.
    Epstein SL; Aroor A; Evanusa M; Sklar EI; Parsons S
    Cogn Process; 2015 Sep; 16 Suppl 1():215-9. PubMed ID: 26227680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robust Stereo Visual Inertial Navigation System Based on Multi-Stage Outlier Removal in Dynamic Environments.
    Nam DV; Gon-Woo K
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32455697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A GPU-accelerated cortical neural network model for visually guided robot navigation.
    Beyeler M; Oros N; Dutt N; Krichmar JL
    Neural Netw; 2015 Dec; 72():75-87. PubMed ID: 26494281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System.
    Kim HS; Seo W; Baek KR
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28327513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developmental word grounding through a growing neural network with a humanoid robot.
    He X; Kojima R; Hasegawa O
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):451-62. PubMed ID: 17416171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-Robot 2.5D Localization and Mapping Using a Monte Carlo Algorithm on a Multi-Level Surface.
    Rosas-Cervantes VA; Hoang QD; Lee SG; Choi JH
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of visual map complexity on the attentional processing of landmarks.
    Keil J; Edler D; Kuchinke L; Dickmann F
    PLoS One; 2020; 15(3):e0229575. PubMed ID: 32119712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.