BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24109544)

  • 1. Between tide and wave marks: a unifying model of physical zonation on littoral shores.
    Bird CE; Franklin EC; Smith CM; Toonen RJ
    PeerJ; 2013; 1():e154. PubMed ID: 24109544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Intertidal Position on Metabolism and Behavior in the Acorn Barnacle,
    Horn KM; Fournet MEH; Liautaud KA; Morton LN; Cyr AM; Handley AL; Dotterweich MM; Anderson KN; Zippay ML; Hardy KM
    Integr Org Biol; 2021; 3(1):obab010. PubMed ID: 34308149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing biogeochemical fluctuations in a world of extremes: A synthesis for temperate intertidal habitats in the face of global change.
    Wolfe K; Nguyen HD; Davey M; Byrne M
    Glob Chang Biol; 2020 Jul; 26(7):3858-3879. PubMed ID: 32239581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Causes and consequences of thermal tolerance limits in rocky intertidal porcelain crabs, genus petrolisthes.
    Stillman JH
    Integr Comp Biol; 2002 Aug; 42(4):790-6. PubMed ID: 21708777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature relations of aerial and aquatic respiration in six littoral snails in respiration in six littoral snails in relation to their vertical zonation.
    McMahon RF; Russell-Hunter WD
    Biol Bull; 1977 Apr; 152(2):182-98. PubMed ID: 856295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple stressors drive convergent evolution of performance properties in marine macrophytes.
    Demes KW; Starko S; Harley CDG
    New Phytol; 2021 Feb; 229(4):2311-2323. PubMed ID: 33037641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental correlates of phenotypic variation: do variable tidal regimes influence morphology in intertidal seaweeds?
    Mueller R; Fischer AM; Bolch CJ; Wright JT
    J Phycol; 2015 Oct; 51(5):859-71. PubMed ID: 26986883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The shifting balance of littoral predator-prey interaction in regimes of hydrodynamic stress.
    Robles CD; Alvarado MA; Desharnais RA
    Oecologia; 2001 Jun; 128(1):142-152. PubMed ID: 28547084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The study of vertical zonation on rocky intertidal shores--a historical perspective.
    Benson KR
    Integr Comp Biol; 2002 Aug; 42(4):776-9. PubMed ID: 21708775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors controlling the vertical zonation of the intertidal seagrass, Zostera japonica in its native range in the northwestern Pacific.
    Kim SH; Kim JW; Kim YK; Park SR; Lee KS
    Mar Environ Res; 2020 May; 157():104959. PubMed ID: 32275500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): correlation of physiology, biochemistry and morphology with vertical distribution.
    Stillman J; Somero G
    J Exp Biol; 1996; 199(Pt 8):1845-55. PubMed ID: 9319758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planktonic Subsidies to Surf-Zone and Intertidal Communities.
    Morgan SG; Shanks AL; MacMahan JH; Reniers AJHM; Feddersen F
    Ann Rev Mar Sci; 2018 Jan; 10():345-369. PubMed ID: 28846492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facilitation of an invader by a native habitat-former increases along interacting gradients of environmental stress.
    Uyà M; Bulleri F; Wright JT; Gribben PE
    Ecology; 2020 Apr; 101(4):e02961. PubMed ID: 31863455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Temporal comparison of the composition and zonation of rocky intertidal organisms at Cocos Island National Park, Pacific, Costa Rica].
    Sibaja-Cordero JA; Cortés J
    Rev Biol Trop; 2010 Dec; 58(4):1387-403. PubMed ID: 21250482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the impact of sea-level rise on intertidal rocky shores with remote sensing.
    Schaefer N; Mayer-Pinto M; Griffin KJ; Johnston EL; Glamore W; Dafforn KA
    J Environ Manage; 2020 May; 261():110203. PubMed ID: 32148273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological performance of intertidal coralline algae during a simulated tidal cycle.
    Guenther RJ; Martone PT
    J Phycol; 2014 Apr; 50(2):310-21. PubMed ID: 26988188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomics based on UHPLC-QToF- and APGC-QToF-MS reveals metabolic pathways reprogramming in response to tidal cycles in the sub-littoral species Mimachlamys varia exposed to aerial emergence.
    Ory P; Bonnet A; Mondeguer F; Breitwieser M; Dubillot E; Graber M
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Mar; 29():74-85. PubMed ID: 30458431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivery of marine larvae to shore requires multiple sequential transport mechanisms.
    Pfaff MC; Branch GM; Fisher JL; Hoffmann V; Ellis AG; Largier JL
    Ecology; 2015 May; 96(5):1399-410. PubMed ID: 26236852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronization of activity rhythms with the tide in a saltmarsh collembolan Anurida maritima.
    Foster WA; Moreton RB
    Oecologia; 1981 Aug; 50(2):265-270. PubMed ID: 28311099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a 'Sea-Level Sensitive' dynamic model: impact of island ontogeny and glacio-eustasy on global patterns of marine island biogeography.
    Ávila SP; Melo C; Berning B; Sá N; Quartau R; Rijsdijk KF; Ramalho RS; Cordeiro R; De Sá NC; Pimentel A; Baptista L; Medeiros A; Gil A; Johnson ME
    Biol Rev Camb Philos Soc; 2019 Jun; 94(3):1116-1142. PubMed ID: 30609249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.