BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24109595)

  • 1. Two potentially novel amylolytic enzyme specificities in the prokaryotic glycoside hydrolase α-amylase family GH57.
    Blesák K; Janeček Š
    Microbiology (Reading); 2013 Dec; 159(Pt 12):2584-2593. PubMed ID: 24109595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New groups of protein homologues in the α-amylase family GH57 closely related to α-glucan branching enzymes and 4-α-glucanotransferases.
    Janeček Š; Martinovičová M
    Genetica; 2020 Apr; 148(2):77-86. PubMed ID: 32096055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico analysis of the α-amylase family GH57: eventual subfamilies reflecting enzyme specificities.
    Martinovičová M; Janeček Š
    3 Biotech; 2018 Jul; 8(7):307. PubMed ID: 29998051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence fingerprints of enzyme specificities from the glycoside hydrolase family GH57.
    Blesák K; Janeček S
    Extremophiles; 2012 May; 16(3):497-506. PubMed ID: 22527043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-structural features and evolutionary relationships of family GH57 α-amylases and their putative α-amylase-like homologues.
    Janeček S; Blesák K
    Protein J; 2011 Aug; 30(6):429-35. PubMed ID: 21786160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases.
    Janeček Š; Svensson B; MacGregor EA
    Cell Mol Life Sci; 2014 Apr; 71(7):1149-70. PubMed ID: 23807207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico identification of catalytic residues and domain fold of the family GH119 sharing the catalytic machinery with the α-amylase family GH57.
    Janeček S; Kuchtová A
    FEBS Lett; 2012 Sep; 586(19):3360-6. PubMed ID: 22819817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family.
    Janeček Š; Gabriško M
    Cell Mol Life Sci; 2016 Jul; 73(14):2707-25. PubMed ID: 27154042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Domain evolution in enzymes of the neopullulanase subfamily.
    Kuchtová A; Janeček Š
    Microbiology (Reading); 2016 Dec; 162(12):2099-2115. PubMed ID: 27902421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases.
    Majzlová K; Pukajová Z; Janeček S
    Carbohydr Res; 2013 Feb; 367():48-57. PubMed ID: 23313816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction of novel thermostable α-amylases from genus Anoxybacillus and proposing to group the Bacillaceae related α-amylases under five individual GH13 subfamilies.
    Cihan AC; Yildiz ED; Sahin E; Mutlu O
    World J Microbiol Biotechnol; 2018 Jun; 34(7):95. PubMed ID: 29904894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between domain evolution, specificity, and taxonomy of the alpha-amylase family members containing a C-terminal starch-binding domain.
    Janecek S; Svensson B; MacGregor EA
    Eur J Biochem; 2003 Feb; 270(4):635-45. PubMed ID: 12581203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Close evolutionary relatedness of alpha-amylases from Archaea and plants.
    Janecek S; Lévêque E; Belarbi A; Haye B
    J Mol Evol; 1999 Apr; 48(4):421-6. PubMed ID: 10079280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatic and biochemical analysis of a novel maltose-forming α-amylase of the GH57 family in the hyperthermophilic archaeon Thermococcus sp. CL1.
    Jeon EJ; Jung JH; Seo DH; Jung DH; Holden JF; Park CS
    Enzyme Microb Technol; 2014 Jun; 60():9-15. PubMed ID: 24835094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Thermotoga maritima MSB8 GH57 α-amylase AmyC as a glycogen-branching enzyme with high hydrolytic activity.
    Zhang X; Leemhuis H; Janeček Š; Martinovičová M; Pijning T; van der Maarel MJEC
    Appl Microbiol Biotechnol; 2019 Aug; 103(15):6141-6151. PubMed ID: 31190240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Silico Analysis of Fungal and Chloride-Dependent α-Amylases within the Family GH13 with Identification of Possible Secondary Surface-Binding Sites.
    Janíčková Z; Janeček Š
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new GH13 subfamily represented by the α-amylase from the halophilic archaeon Haloarcula hispanica.
    Janeček Š; Zámocká B
    Extremophiles; 2020 Mar; 24(2):207-217. PubMed ID: 31734852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico analysis of family GH77 with focus on amylomaltases from borreliae and disproportionating enzymes DPE2 from plants and bacteria.
    Kuchtová A; Janeček Š
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1260-8. PubMed ID: 26006747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal α-amylases from three GH13 subfamilies: their sequence-structural features and evolutionary relationships.
    Janíčková Z; Janeček Š
    Int J Biol Macromol; 2020 Sep; 159():763-772. PubMed ID: 32416292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatics of the glycoside hydrolase family 57 and identification of catalytic residues in amylopullulanase from Thermococcus hydrothermalis.
    Zona R; Chang-Pi-Hin F; O'Donohue MJ; Janecek S
    Eur J Biochem; 2004 Jul; 271(14):2863-72. PubMed ID: 15233783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.