BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24109638)

  • 1. Dynamic method of optical coherence elastography in determining viscoelasticity of polymers and tissues.
    Wang Y; Shemonski ND; Adie SG; Boppart SA; Insana MF
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():117-20. PubMed ID: 24109638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.
    Nguyen MM; Zhou S; Robert JL; Shamdasani V; Xie H
    Ultrasound Med Biol; 2014 Jan; 40(1):168-76. PubMed ID: 24139915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring mechanical wave speed, dispersion, and viscoelastic modulus of the cornea using optical coherence elastography.
    Ramier A; Tavakol B; Yun SH
    Opt Express; 2019 Jun; 27(12):16635-16649. PubMed ID: 31252887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion and shear modulus measurements of porcine liver.
    Orescanin M; Qayyum MA; Toohey KS; Insana MF
    Ultrason Imaging; 2010 Oct; 32(4):255-66. PubMed ID: 21213570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.
    Amador C; Urban MW; Chen S; Greenleaf JF
    Phys Med Biol; 2012 Mar; 57(5):1263-82. PubMed ID: 22345425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
    Amador Carrascal C; Chen S; Urban MW; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):3-13. PubMed ID: 29283342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-resolved acoustic radiation force optical coherence elastography.
    Qi W; Chen R; Chou L; Liu G; Zhang J; Zhou Q; Chen Z
    J Biomed Opt; 2012 Nov; 17(11):110505. PubMed ID: 23123971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Assessment of Thin-Layer Tissue Viscoelastic Properties Using Ultrasonic Micro-Elastography With Lamb Wave Model.
    Shih CC; Qian X; Ma T; Han Z; Huang CC; Zhou Q; Shung KK
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1887-1898. PubMed ID: 29993652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A compact 0.5 T MR elastography device and its application for studying viscoelasticity changes in biological tissues during progressive formalin fixation.
    Braun J; Tzschätzsch H; Körting C; Ariza de Schellenberger A; Jenderka M; Drießle T; Ledwig M; Sack I
    Magn Reson Med; 2018 Jan; 79(1):470-478. PubMed ID: 28321914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive experimental assessments of rheological models' performance in elastography of soft tissues.
    Poul SS; Ormachea J; Ge GR; Parker KJ
    Acta Biomater; 2022 Jul; 146():259-273. PubMed ID: 35525481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustomotive optical coherence elastography for measuring material mechanical properties.
    Liang X; Orescanin M; Toohey KS; Insana MF; Boppart SA
    Opt Lett; 2009 Oct; 34(19):2894-6. PubMed ID: 19794759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitored steady-state excitation and recovery (MSSER) radiation force imaging using viscoelastic models.
    Mauldin FW; Haider MA; Loboa EG; Behler RH; Euliss LE; Pfeiler TW; Gallippi CM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1597-610. PubMed ID: 18986950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of the soft tissue viscous and elastic properties using ultrasound elastography and rheological models: validation and applications in plantar soft tissue assessment.
    Tecse A; Romero SE; Naemi R; Castaneda B
    Phys Med Biol; 2023 May; 68(10):. PubMed ID: 36996846
    [No Abstract]   [Full Text] [Related]  

  • 14. Quantification of liver viscoelasticity with acoustic radiation force: a study of hepatic fibrosis in a rat model.
    Chen X; Shen Y; Zheng Y; Lin H; Guo Y; Zhu Y; Zhang X; Wang T; Chen S
    Ultrasound Med Biol; 2013 Nov; 39(11):2091-102. PubMed ID: 23993170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of corneal viscoelasticity using elastic wave optical coherence elastography.
    Jin Z; Zhou Y; Shen M; Wang Y; Lu F; Zhu D
    J Biophotonics; 2020 Jan; 13(1):e201960074. PubMed ID: 31626371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kelvin-Voigt Parameters Reconstruction of Cervical Tissue-Mimicking Phantoms Using Torsional Wave Elastography.
    Callejas A; Gomez A; Faris IH; Melchor J; Rus G
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31349721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The performance of steady-state harmonic magnetic resonance elastography when applied to viscoelastic materials.
    Doyley MM; Perreard I; Patterson AJ; Weaver JB; Paulsen KM
    Med Phys; 2010 Aug; 37(8):3970-9. PubMed ID: 20879559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D mapping of elastic modulus using shear wave optical micro-elastography.
    Zhu J; Qi L; Miao Y; Ma T; Dai C; Qu Y; He Y; Gao Y; Zhou Q; Chen Z
    Sci Rep; 2016 Oct; 6():35499. PubMed ID: 27762276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved two-point frequency shift power method for measurement of shear wave attenuation.
    Kijanka P; Urban MW
    Ultrasonics; 2022 Aug; 124():106735. PubMed ID: 35390627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic and quantitative assessment of blood coagulation using optical coherence elastography.
    Xu X; Zhu J; Chen Z
    Sci Rep; 2016 Apr; 6():24294. PubMed ID: 27090437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.