BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24109638)

  • 21. Temperature dependent of viscoelasticity measurement on fat emulsion phantom using acoustic radiation force elasticity imaging method.
    Xie P; Wang M; Guo Y; Wen H; Chen X; Chen S; Lin H
    Technol Health Care; 2018; 26(S1):449-458. PubMed ID: 29758968
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parametric imaging of viscoelasticity using optical coherence elastography.
    Wijesinghe P; McLaughlin RA; Sampson DD; Kennedy BF
    Phys Med Biol; 2015 Mar; 60(6):2293-307. PubMed ID: 25715798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Viscoelastic properties of normal rat liver measured by ultrasound elastography: Comparison with oscillatory rheometry.
    Lin H; Shen Y; Chen X; Zhu Y; Zheng Y; Zhang X; Guo Y; Wang T; Chen S
    Biorheology; 2016; 53(5-6):193-207. PubMed ID: 27858670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method.
    Zhu J; Qu Y; Ma T; Li R; Du Y; Huang S; Shung KK; Zhou Q; Chen Z
    Opt Lett; 2015 May; 40(9):2099-102. PubMed ID: 25927794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single tracking location acoustic radiation force impulse viscoelasticity estimation (STL-VE): A method for measuring tissue viscoelastic parameters.
    Langdon JH; Elegbe E; McAleavey SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1225-44. PubMed ID: 26168170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-Time Nondestructive Viscosity Measurement of Soft Tissue Based on Viscoelastic Response Optical Coherence Elastography.
    Liu Z; Liu W; Chen Q; Hu Y; Li Y; Zheng X; Fang D; Liu H; Sun C
    Materials (Basel); 2023 Sep; 16(17):. PubMed ID: 37687714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does group velocity always reflect elastic modulus in shear wave elastography?
    Pelivanov I; Gao L; Pitre J; Kirby M; Song S; Li D; Shen T; Wang R; O'Donnell M
    J Biomed Opt; 2019 Jul; 24(7):1-11. PubMed ID: 31342691
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Layer-specific ultrasound elastography using a multi-layered shear wave dispersion model for assessing the viscoelastic properties.
    Lu G; Li R; Qian X; Chen R; Jiang L; Chen Z; Kirk Shung K; Humayun MS; Zhou Q
    Phys Med Biol; 2021 Jan; 66(3):035003. PubMed ID: 33181500
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acoustic radiation force optical coherence elastography for evaluating mechanical properties of soft condensed matters and its biological applications.
    Liu HC; Kijanka P; Urban MW
    J Biophotonics; 2020 Mar; 13(3):e201960134. PubMed ID: 31872545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
    Zhu Y; Dong C; Yin Y; Chen X; Guo Y; Zheng Y; Shen Y; Wang T; Zhang X; Chen S
    Ultrasound Med Biol; 2015 Feb; 41(2):601-9. PubMed ID: 25542484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimating the viscoelastic modulus of a thrombus using an ultrasonic shear-wave approach.
    Huang CC; Chen PY; Shih CC
    Med Phys; 2013 Apr; 40(4):042901. PubMed ID: 23556923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wave Propagation in a Fractional Viscoelastic Tissue Model: Application to Transluminal Procedures.
    Gomez A; Rus G; Saffari N
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920801
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source.
    Song S; Le NM; Huang Z; Shen T; Wang RK
    Opt Lett; 2015 Nov; 40(21):5007-10. PubMed ID: 26512505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase Velocity Estimation With Expanded Bandwidth in Viscoelastic Phantoms and Tissues.
    Kijanka P; Urban MW
    IEEE Trans Med Imaging; 2021 May; 40(5):1352-1362. PubMed ID: 33502973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantifying viscosity and elasticity using holographic imaging by Rayleigh wave dispersion.
    Singh A; Pati F; John R
    Opt Lett; 2022 May; 47(9):2214-2217. PubMed ID: 35486763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method.
    Guan G; Li C; Ling Y; Yang Y; Vorstius JB; Keatch RP; Wang RK; Huang Z
    J Biomed Opt; 2013 Nov; 18(11):111417. PubMed ID: 24193945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diffuse shear wave spectroscopy for soft tissue viscoelastic characterization.
    Beuve S; Kritly L; Callé S; Remenieras JP
    Ultrasonics; 2021 Feb; 110():106239. PubMed ID: 32942089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acoustic radiation force-induced longitudinal shear wave for ultrasound-based viscoelastic evaluation.
    Liu HC; Lee HK; Urban MW; Zhou Q; Kijanka P
    Ultrasonics; 2024 Jun; 142():107389. PubMed ID: 38924960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical coherence elastography under homolateral parallel acoustic radiation force excitation for ocular elasticity quantification.
    Wang C; Fan F; Ma J; Ma Z; Meng X; Zhu J
    Opt Lett; 2024 May; 49(10):2817-2820. PubMed ID: 38748169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.