BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24109638)

  • 41. Dispersion in Tissue-Mimicking Gels Measured with Shear Wave Elastography and Torsional Vibration Rheometry.
    Yengul SS; Barbone PE; Madore B
    Ultrasound Med Biol; 2019 Feb; 45(2):586-604. PubMed ID: 30473175
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Copolymer-in-oil phantom materials for elastography.
    Oudry J; Bastard C; Miette V; Willinger R; Sandrin L
    Ultrasound Med Biol; 2009 Jul; 35(7):1185-97. PubMed ID: 19427100
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lorentz force optical coherence elastography.
    Wu C; Singh M; Han Z; Raghunathan R; Liu CH; Li J; Schill A; Larin KV
    J Biomed Opt; 2016 Sep; 21(9):90502. PubMed ID: 27622242
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comprehensive Viscoelastic Characterization of Tissues and the Inter-relationship of Shear Wave (Group and Phase) Velocity, Attenuation and Dispersion.
    Ormachea J; Parker KJ
    Ultrasound Med Biol; 2020 Dec; 46(12):3448-3459. PubMed ID: 32988669
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fractal network dimension and viscoelastic powerlaw behavior: II. An experimental study of structure-mimicking phantoms by magnetic resonance elastography.
    Guo J; Posnansky O; Hirsch S; Scheel M; Taupitz M; Braun J; Sack I
    Phys Med Biol; 2012 Jun; 57(12):4041-53. PubMed ID: 22674199
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A method for characterization of tissue elastic properties combining ultrasonic computed tomography with elastography.
    Glozman T; Azhari H
    J Ultrasound Med; 2010 Mar; 29(3):387-98. PubMed ID: 20194935
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rheological assessment of a polymeric spherical structure using a three-dimensional shear wave scattering model in dynamic spectroscopy elastography.
    Montagnon E; Hadj-Henni A; Schmitt C; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):277-87. PubMed ID: 24474134
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Elasticity imaging of polymeric media.
    Sridhar M; Liu J; Insana MF
    J Biomech Eng; 2007 Apr; 129(2):259-72. PubMed ID: 17408331
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison between shear wave dispersion magneto motive ultrasound and transient elastography for measuring tissue-mimicking phantom viscoelasticity.
    Almeida TW; Sampaio DR; Bruno AC; Pavan TZ; Carneiro AA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2138-45. PubMed ID: 26670853
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acoustic radiation force optical coherence elastography for elasticity assessment of soft tissues.
    Zhu J; He X; Chen Z
    Appl Spectrosc Rev; 2019; 54(6):457-481. PubMed ID: 31749516
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of a forward model of axisymmetric shear wave propagation in viscoelastic media to shear wave elastography.
    Yengul SS; Barbone PE; Madore B
    J Acoust Soc Am; 2018 Jun; 143(6):3266. PubMed ID: 29960488
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative analysis of liver fibrosis in rats with shearwave dispersion ultrasound vibrometry: comparison with dynamic mechanical analysis.
    Zhu Y; Zhang X; Zheng Y; Chen X; Shen Y; Lin H; Guo Y; Wang T; Chen S
    Med Eng Phys; 2014 Nov; 36(11):1401-7. PubMed ID: 24835187
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography.
    Zhu J; Yu J; Qu Y; He Y; Li Y; Yang Q; Huo T; He X; Chen Z
    Opt Lett; 2018 May; 43(10):2388-2391. PubMed ID: 29762599
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Viscoelasticity Mapping by Identification of Local Shear Wave Dynamics.
    van Sloun RJG; Wildeboer RR; Wijkstra H; Mischi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1666-1673. PubMed ID: 28841556
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Viscoelastic properties' characterization of corneal stromal models using non-contact surface acoustic wave optical coherence elastography (SAW-OCE).
    Zhang Y; Zhou K; Feng Z; Feng K; Ji Y; Li C; Huang Z
    J Biophotonics; 2022 Jan; 15(1):e202100253. PubMed ID: 34713598
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamic viscoelastic models of human skin using optical elastography.
    Kearney SP; Khan A; Dai Z; Royston TJ
    Phys Med Biol; 2015 Sep; 60(17):6975-90. PubMed ID: 26305137
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography.
    Nguyen TM; Arnal B; Song S; Huang Z; Wang RK; O'Donnell M
    J Biomed Opt; 2015 Jan; 20(1):016001. PubMed ID: 25554970
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Laser-induced elastic wave classification: thermoelastic versus ablative regimes for all-optical elastography applications.
    Das S; Schill A; Liu CH; Aglyamov S; Larin KV
    J Biomed Opt; 2020 Mar; 25(3):1-13. PubMed ID: 32189479
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of novel imaging probe for optical/acoustic radiation imaging (OARI).
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2013 Nov; 40(11):111910. PubMed ID: 24320443
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Frequency-Shift Method to Measure Shear-Wave Attenuation in Soft Tissues.
    Bernard S; Kazemirad S; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Mar; 64(3):514-524. PubMed ID: 27913343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.