BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 24109672)

  • 1. Multiple optical stimulation to neuron using Si opto-neural probe with multiple optical waveguides and metal-cover for optogenetics.
    Kanno S; Lee S; Harashima T; Kuki T; Kino H; Mushiake H; Yao H; Tanaka T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():253-6. PubMed ID: 24109672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimodal Functional Analysis Platform: 2. Development of Si Opto-Electro Multifunctional Neural Probe with Multiple Optical Waveguides and Embedded Optical Fiber for Optogenetics.
    Tanaka T; Katayama N; Sakamoto K; Osanai M; Mushiake H
    Adv Exp Med Biol; 2021; 1293():481-491. PubMed ID: 33398835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nanofabricated optoelectronic probe for manipulating and recording neural dynamics.
    Li B; Lee K; Masmanidis SC; Li M
    J Neural Eng; 2018 Aug; 15(4):046008. PubMed ID: 29629879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fiber-based implantable multi-optrode array with contiguous optical and electrical sites.
    Chen S; Pei W; Gui Q; Chen Y; Zhao S; Wang H; Chen H
    J Neural Eng; 2013 Aug; 10(4):046020. PubMed ID: 23883568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a microfluidic platform with integrated power splitting waveguides for optogenetic neural cell stimulation.
    Feng H; Shu W; Chen X; Zhang Y; Lu Y; Wang L; Chen Y
    Biomed Microdevices; 2015 Oct; 17(5):101. PubMed ID: 26371060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications.
    Wu F; Stark E; Im M; Cho IJ; Yoon ES; Buzsáki G; Wise KD; Yoon E
    J Neural Eng; 2013 Oct; 10(5):056012. PubMed ID: 23985803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications.
    Shim E; Chen Y; Masmanidis S; Li M
    Sci Rep; 2016 Mar; 6():22693. PubMed ID: 26941111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy.
    Hayashi Y; Tagawa Y; Yawata S; Nakanishi S; Funabiki K
    Eur J Neurosci; 2012 Sep; 36(6):2722-32. PubMed ID: 22780218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording.
    Lee J; Ozden I; Song YK; Nurmikko AV
    Nat Methods; 2015 Dec; 12(12):1157-62. PubMed ID: 26457862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe.
    McAlinden N; Gu E; Dawson MD; Sakata S; Mathieson K
    Front Neural Circuits; 2015; 9():25. PubMed ID: 26074778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats.
    Sharma K; Jäckel Z; Schneider A; Paul O; Diester I; Ruther P
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795066
    [No Abstract]   [Full Text] [Related]  

  • 12. Opto- μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics.
    Kwon KY; Sirowatka B; Weber A; Li W
    IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):593-600. PubMed ID: 24144668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual-shank neural probe integrated with double waveguides on each shank for optogenetic applications.
    Im M; Cho IJ; Wu F; Wise KD; Yoon E
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5480-3. PubMed ID: 22255578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe.
    Fiáth R; Beregszászi P; Horváth D; Wittner L; Aarts AA; Ruther P; Neves HP; Bokor H; Acsády L; Ulbert I
    J Neurophysiol; 2016 Nov; 116(5):2312-2330. PubMed ID: 27535370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetic entrainment of neural oscillations with hybrid fiber probes.
    Kilias A; Canales A; Froriep UP; Park S; Egert U; Anikeeva P
    J Neural Eng; 2018 Oct; 15(5):056006. PubMed ID: 29923505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates.
    Ozden I; Wang J; Lu Y; May T; Lee J; Goo W; O'Shea DJ; Kalanithi P; Diester I; Diagne M; Deisseroth K; Shenoy KV; Nurmikko AV
    J Neurosci Methods; 2013 Sep; 219(1):142-54. PubMed ID: 23867081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A silicon-based neural probe with densely-packed low-impedance titanium nitride microelectrodes for ultrahigh-resolution in vivo recordings.
    Fiáth R; Raducanu BC; Musa S; Andrei A; Lopez CM; van Hoof C; Ruther P; Aarts A; Horváth D; Ulbert I
    Biosens Bioelectron; 2018 May; 106():86-92. PubMed ID: 29414094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.
    Royer S; Zemelman BV; Barbic M; Losonczy A; Buzsáki G; Magee JC
    Eur J Neurosci; 2010 Jun; 31(12):2279-91. PubMed ID: 20529127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-density optrodes for multi-scale electrophysiology and optogenetic stimulation.
    Chamanzar M; Borysov M; Maharbiz MM; Blanche TJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6838-41. PubMed ID: 25571567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.