These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24109694)

  • 1. NEUROExos: A powered elbow orthosis for post-stroke early neurorehabilitation.
    Cempini M; Giovacchini F; Vitiello N; Cortese M; Moisé M; Posteraro F; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():342-5. PubMed ID: 24109694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-II Clinical Validation of a Powered Exoskeleton for the Treatment of Elbow Spasticity.
    Crea S; Cempini M; Mazzoleni S; Carrozza MC; Posteraro F; Vitiello N
    Front Neurosci; 2017; 11():261. PubMed ID: 28553200
    [No Abstract]   [Full Text] [Related]  

  • 3. Rehabilitation strategy for post-stroke recovery using an innovative elbow exoskeleton.
    Manna SK; Dubey VN
    Proc Inst Mech Eng H; 2019 Jun; 233(6):668-680. PubMed ID: 31043118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving elbow torque output of stroke patients with assistive torque controlled by EMG signals.
    Cheng HS; Ju MS; Lin CC
    J Biomech Eng; 2003 Dec; 125(6):881-6. PubMed ID: 14986414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
    Zhu Y; Zheng T; Jin H; Yang J; Zhao J
    Technol Health Care; 2015; 24 Suppl 1():S113-22. PubMed ID: 26409545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actuation system modelling and design optimization for an assistive exoskeleton for disabled and elderly with series and parallel elasticity.
    Ghaffar A; Dehghani-Sanij AA; Xie SQ
    Technol Health Care; 2023; 31(4):1129-1151. PubMed ID: 36970915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and performance characterization of a hand orthosis prototype to aid activities of daily living in a post-stroke population.
    Gasser BW; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3877-80. PubMed ID: 26737140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation.
    Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a perfect balance system for active upper-extremity exoskeletons.
    Smith RL; Lobo-Prat J; van der Kooij H; Stienen AH
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650376. PubMed ID: 24187195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bio-robotic leg orthosis for rehabilitation and mobility enhancement.
    Horst RW
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5030-3. PubMed ID: 19964374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
    Wu KY; Su YY; Yu YL; Lin KY; Lan CC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():567-572. PubMed ID: 28813880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical Reactions of Exoskeleton Neurorehabilitation Robots in Spastic Elbows and Wrists.
    Nam HS; Koh S; Kim YJ; Beom J; Lee WH; Lee SU; Kim S
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2196-2203. PubMed ID: 28613178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling, design, and optimization of Mindwalker series elastic joint.
    Wang S; Meijneke C; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650381. PubMed ID: 24187200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling a motorized orthosis to follow elbow volitional movement: tests with individuals with pathological tremor.
    Herrnstadt G; McKeown MJ; Menon C
    J Neuroeng Rehabil; 2019 Feb; 16(1):23. PubMed ID: 30709409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A wearable robotic knee orthosis for gait training: a case-series of hemiparetic stroke survivors.
    Wong CK; Bishop L; Stein J
    Prosthet Orthot Int; 2012 Mar; 36(1):113-20. PubMed ID: 22082495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An intrinsically compliant robotic orthosis for treadmill training.
    Hussain S; Xie SQ; Jamwal PK; Parsons J
    Med Eng Phys; 2012 Dec; 34(10):1448-53. PubMed ID: 22421099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and control of system for elbow rehabilitation: Preliminary findings.
    Mikołajczyk T; Kłodowski A; Mikołajewska E; Walkowiak P; Berjano P; Villafañe JH; Aggogeri F; Borboni A; Fausti D; Petrogalli G
    Adv Clin Exp Med; 2018 Dec; 27(12):1661-1669. PubMed ID: 30311751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.
    Ren Y; Wu YN; Yang CY; Xu T; Harvey RL; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):589-596. PubMed ID: 27337720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical design of a distal arm exoskeleton for stroke and spinal cord injury rehabilitation.
    Pehlivan AU; Celik O; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975428. PubMed ID: 22275629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.