These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 24109706)
1. Real-time temperature control system based on the finite element method for liver radiofrequency ablation: effect of the time interval on control. Isobe Y; Watanabe H; Yamazaki N; Lu X; Kobayashi Y; Miyashita T; Hashizume M; Fujie MG Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():392-6. PubMed ID: 24109706 [TBL] [Abstract][Full Text] [Related]
2. Validation of accuracy of liver model with temperature-dependent thermal conductivity by comparing the simulation and in vitro RF ablation experiment. Watanabe H; Yamazaki N; Isobe Y; Lu X; Kobayashi Y; Miyashita T; Ohdaira T; Hashizume M; Fujie MG Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5712-7. PubMed ID: 23367227 [TBL] [Abstract][Full Text] [Related]
3. Estimation of intraoperative blood flow during liver RF ablation using a finite element method-based biomechanical simulation. Watanabe H; Yamazaki N; Kobayashi Y; Miyashita T; Ohdaira T; Hashizume M; Fujie MG Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7441-5. PubMed ID: 22256059 [TBL] [Abstract][Full Text] [Related]
4. Improved perfusion system for bipolar radiofrequency ablation of liver: preliminary findings from a computer modeling study. Berjano EJ; Burdío F; Navarro AC; Burdío JM; Güemes A; Aldana O; Ros P; Sousa R; Lozano R; Tejero E; de Gregorio MA Physiol Meas; 2006 Oct; 27(10):N55-66. PubMed ID: 16951453 [TBL] [Abstract][Full Text] [Related]
5. Numerical evaluation of ablation zone under different tip temperatures during radiofrequency ablation. Wang XR; Gao HJ; Wu SC; Jiang T; Zhou ZH; Bai YP Math Biosci Eng; 2019 Mar; 16(4):2514-2531. PubMed ID: 31137225 [TBL] [Abstract][Full Text] [Related]
6. Effects of variation in perfusion rates and of perfusion models in computational models of radio frequency tumor ablation. Schutt DJ; Haemmerich D Med Phys; 2008 Aug; 35(8):3462-70. PubMed ID: 18777906 [TBL] [Abstract][Full Text] [Related]
9. Ex vivo experiment of saline-enhanced hepatic bipolar radiofrequency ablation with a perfused needle electrode: comparison with conventional monopolar and simultaneous monopolar modes. Lee JM; Kim SH; Han JK; Sohn KL; Choi BI Cardiovasc Intervent Radiol; 2005; 28(3):338-45. PubMed ID: 15789259 [TBL] [Abstract][Full Text] [Related]
10. A surgical device for radiofrequency ablation of large liver tumors. dos Santos I; Correia D; Soares AJ; Góes JA; da Rocha AF; Schutt D; Haemmerich D Physiol Meas; 2008 Oct; 29(10):N59-70. PubMed ID: 18812644 [TBL] [Abstract][Full Text] [Related]
11. Bicomponent Conformal Electrode for Radiofrequency Sequential Ablation and Circumferential Separation of Large Tumors in Solid Organs: Development and In Vitro Evaluation. Wang Z; Luo H; Coleman S; Cuschieri A IEEE Trans Biomed Eng; 2017 Mar; 64(3):699-705. PubMed ID: 27244716 [TBL] [Abstract][Full Text] [Related]
12. Numerical simulation of RF catheter ablation for the treatment of arterial aneurysm. Guo X; Nan Q; Qiao A Biomed Mater Eng; 2015; 26 Suppl 1():S271-7. PubMed ID: 26406013 [TBL] [Abstract][Full Text] [Related]
13. Switching monopolar radiofrequency ablation technique using multiple, internally cooled electrodes and a multichannel generator: ex vivo and in vivo pilot study. Lee JM; Han JK; Kim HC; Choi YH; Kim SH; Choi JY; Choi BI Invest Radiol; 2007 Mar; 42(3):163-71. PubMed ID: 17287646 [TBL] [Abstract][Full Text] [Related]
14. Automatic control of finite element models for temperature-controlled radiofrequency ablation. Haemmerich D; Webster JG Biomed Eng Online; 2005 Jul; 4():42. PubMed ID: 16018811 [TBL] [Abstract][Full Text] [Related]
15. Multiple-electrode radiofrequency ablation: simultaneous production of separate zones of coagulation in an in vivo porcine liver model. Laeseke PF; Sampson LA; Haemmerich D; Brace CL; Fine JP; Frey TM; Winter TC; Lee FT J Vasc Interv Radiol; 2005 Dec; 16(12):1727-35. PubMed ID: 16371542 [TBL] [Abstract][Full Text] [Related]
16. How coagulation zone size is underestimated in computer modeling of RF ablation by ignoring the cooling phase just after RF power is switched off. Irastorza RM; Trujillo M; Berjano E Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28146314 [TBL] [Abstract][Full Text] [Related]
17. Electric and thermal field effects in tissue around radiofrequency electrodes. Cosman ER; Cosman ER Pain Med; 2005; 6(6):405-24. PubMed ID: 16336478 [TBL] [Abstract][Full Text] [Related]
18. Experimental and theoretical study of an internally cooled bipolar electrode for RF coagulation of biological tissues. González-Suárez A; Alba J; Trujillo M; Berjano E Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6878-81. PubMed ID: 22255919 [TBL] [Abstract][Full Text] [Related]
19. Temperature dependence of thermal conductivity of liver based on various experiments and a numerical simulation for RF ablation. Watanabe H; Yamazaki N; Kobayashi Y; Miyashita T; Hashizume M; Fujie MG Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3222-8. PubMed ID: 21096602 [TBL] [Abstract][Full Text] [Related]
20. FEM analysis of RF breast ablation: multiprobe versus cool-tip electrode. Quaranta V; Manenti G; Bolacchi F; Cossu E; Pistolese CA; Buonomo OC; Carotenuto L; Piconi C; Simonetti G Anticancer Res; 2007; 27(2):775-84. PubMed ID: 17465202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]