These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 24109716)

  • 41. An embedded implementation based on adaptive filter bank for brain-computer interface systems.
    Belwafi K; Romain O; Gannouni S; Ghaffari F; Djemal R; Ouni B
    J Neurosci Methods; 2018 Jul; 305():1-16. PubMed ID: 29738806
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [A review of brain-computer interfaces (BCIs)].
    Yang BH; Yan GZ; Yan RG
    Zhongguo Yi Liao Qi Xie Za Zhi; 2005 Jul; 29(5):353-7. PubMed ID: 16419943
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hilbert-Huang Spectrum as a new field for the identification of EEG event related de-/synchronization for BCI applications.
    Panoulas KI; Hadjileontiadis LJ; Panas SM
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3832-5. PubMed ID: 19163548
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estimating the mutual information of an EEG-based Brain-Computer Interface.
    Schlögl A; Neuper C; Pfurtscheller G
    Biomed Tech (Berl); 2002; 47(1-2):3-8. PubMed ID: 11921635
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Online continual decoding of streaming EEG signal with a balanced and informative memory buffer.
    Duan T; Wang Z; Li F; Doretto G; Adjeroh DA; Yin Y; Tao C
    Neural Netw; 2024 Aug; 176():106338. PubMed ID: 38692190
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of instructive visual stimuli on neurofeedback training for motor imagery-based brain-computer interface.
    Kondo T; Saeki M; Hayashi Y; Nakayashiki K; Takata Y
    Hum Mov Sci; 2015 Oct; 43():239-49. PubMed ID: 25467185
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior.
    Bai O; Lin P; Vorbach S; Floeter MK; Hattori N; Hallett M
    J Neural Eng; 2008 Mar; 5(1):24-35. PubMed ID: 18310808
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative EEG and neurofeedback in children and adolescents: anxiety disorders, depressive disorders, comorbid addiction and attention-deficit/hyperactivity disorder, and brain injury.
    Simkin DR; Thatcher RW; Lubar J
    Child Adolesc Psychiatr Clin N Am; 2014 Jul; 23(3):427-64. PubMed ID: 24975621
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A conceptual space for EEG-based brain-computer interfaces.
    Kosmyna N; Lécuyer A
    PLoS One; 2019; 14(1):e0210145. PubMed ID: 30605482
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A brain computer interface-based explorer.
    Bai L; Yu T; Li Y
    J Neurosci Methods; 2015 Apr; 244():2-7. PubMed ID: 24975290
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Assessment of neurofeedback training by means of motor imagery based-BCI for cognitive rehabilitation.
    Gomez-Pilar J; Corralejo R; Nicolas-Alonso LF; Álvarez D; Hornero R
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3630-3. PubMed ID: 25570777
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimized Complex Network Method (OCNM) for Improving Accuracy of Measuring Human Attention in Single-Electrode Neurofeedback System.
    Wu ZP; Zhang W; Zhao J; Chen C; Ji P
    Comput Intell Neurosci; 2019; 2019():2167871. PubMed ID: 30944553
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single-trial EEG analysis using similarity measure.
    Hsu WY
    Biomed Mater Eng; 2015; 26(3-4):161-8. PubMed ID: 26684888
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A review of brain-computer interface games and an opinion survey from researchers, developers and users.
    Ahn M; Lee M; Choi J; Jun SC
    Sensors (Basel); 2014 Aug; 14(8):14601-33. PubMed ID: 25116904
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The MindGame: a P300-based brain-computer interface game.
    Finke A; Lenhardt A; Ritter H
    Neural Netw; 2009 Nov; 22(9):1329-33. PubMed ID: 19635654
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effectiveness of EEG-feedback on attention, impulsivity and EEG: a sham feedback controlled study.
    Logemann HN; Lansbergen MM; Van Os TW; Böcker KB; Kenemans JL
    Neurosci Lett; 2010 Jul; 479(1):49-53. PubMed ID: 20478360
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An independent SSVEP-based brain-computer interface in locked-in syndrome.
    Lesenfants D; Habbal D; Lugo Z; Lebeau M; Horki P; Amico E; Pokorny C; Gómez F; Soddu A; Müller-Putz G; Laureys S; Noirhomme Q
    J Neural Eng; 2014 Jun; 11(3):035002. PubMed ID: 24838215
    [TBL] [Abstract][Full Text] [Related]  

  • 59. EEG-based brain-computer interfaces: an overview of basic concepts and clinical applications in neurorehabilitation.
    Machado S; Araújo F; Paes F; Velasques B; Cunha M; Budde H; Basile LF; Anghinah R; Arias-Carrión O; Cagy M; Piedade R; de Graaf TA; Sack AT; Ribeiro P
    Rev Neurosci; 2010; 21(6):451-68. PubMed ID: 21438193
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Brain-Computer Interface-Based Action Observation Game That Enhances Mu Suppression.
    Lim H; Ku J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2290-2296. PubMed ID: 30371380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.