These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24109764)

  • 1. Developing a thermoacoustic sensor adaptive to ambient temperatures.
    Xing J; Ang W; Lim A; Yu X; Chen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():624-7. PubMed ID: 24109764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network.
    Xing J; Chen J
    Sensors (Basel); 2015 Jun; 15(6):14788-808. PubMed ID: 26110412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoacoustic sensor for ultrasound power measurements and ultrasonic equipment calibration.
    Fay B; Rinker M; Lewin PA
    Ultrasound Med Biol; 1994; 20(4):367-73. PubMed ID: 8085293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and characterization of a close-proximity thermoacoustic sensor.
    Xing J; Choi M; Ang W; Yu X; Chen J
    Ultrasound Med Biol; 2013 Sep; 39(9):1613-22. PubMed ID: 23820248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of the impedance matrix of a thermoacoustic core: applications to the design of thermoacoustic engines.
    Bannwart FC; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2013 May; 133(5):2650-60. PubMed ID: 23654373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical prediction of the onset of thermoacoustic instability from the experimental transfer matrix of a thermoacoustic core.
    Guedra M; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2011 Jul; 130(1):145-52. PubMed ID: 21786885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoacoustic power conversion using a piezoelectric transducer.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jul; 128(1):98-103. PubMed ID: 20649205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.
    de Jong JA; Wijnant YH; de Boer A
    J Acoust Soc Am; 2014 Mar; 135(3):1149-58. PubMed ID: 24606258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.
    Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D
    Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure.
    Morris P; Hurrell A; Shaw A; Zhang E; Beard P
    J Acoust Soc Am; 2009 Jun; 125(6):3611-22. PubMed ID: 19507943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time 3D thermoacoustic imaging and thermometry using a self-calibration technique.
    Tamimi EA; Xin H; Witte RS
    Appl Opt; 2020 Aug; 59(22):G255-G261. PubMed ID: 32749380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field.
    Morris H; Rivens I; Shaw A; Haar GT
    Phys Med Biol; 2008 Sep; 53(17):4759-76. PubMed ID: 18701773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RF testbed for thermoacoustic tomography.
    Fallon D; Yan L; Hanson GW; Patch SK
    Rev Sci Instrum; 2009 Jun; 80(6):064301. PubMed ID: 19566215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear propagation model for ultrasound hydrophones calibration in the frequency range up to 100 MHz.
    Radulescu EG; Wójcik J; Lewin PA; Nowicki A
    Ultrasonics; 2003 Jun; 41(4):239-45. PubMed ID: 12782254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoacoustic range verification in the presence of acoustic heterogeneity and soundspeed errors - Robustness relative to ultrasound image of underlying anatomy.
    Patch SK; Santiago-Gonzalez D; Mustapha B
    Med Phys; 2019 Jan; 46(1):318-327. PubMed ID: 30362132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Difference in electrodynamic transduction between speaker and alternator in thermoacoustic applications.
    Gonen E; Grossman G
    J Acoust Soc Am; 2015 Sep; 138(3):1537-48. PubMed ID: 26428791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breast cancer diagnosis with a microwave thermoacoustic imaging technique-a numerical approach.
    Soltani M; Rahpeima R; Kashkooli FM
    Med Biol Eng Comput; 2019 Jul; 57(7):1497-1513. PubMed ID: 30919269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound radiation from a three-layer thermoacoustic transformation device.
    Nishioka T; Teshima Y; Mano T; Sakai K; Asada T; Matsukawa M; Ohta T; Hiryu S
    Ultrasonics; 2015 Mar; 57():84-9. PubMed ID: 25465964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoacoustic optical path length stabilization in a single-mode optical fiber.
    Lewoczko-Adamczyk W; Schiemangk M; Müller H; Peters A
    Appl Opt; 2009 Feb; 48(4):704-7. PubMed ID: 19183596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of in situ exposure to ultrasound: an acoustical attenuation method.
    Preston RC; Shaw A; Zeqiri B
    Ultrasound Med Biol; 1991; 17(4):317-32. PubMed ID: 1949344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.