These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24109806)

  • 1. Analysis of fractal electrodes for efficient neural stimulation.
    Golestanirad L; Pollo C; Graham SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():791-4. PubMed ID: 24109806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of fractal electrodes for efficient neural stimulation.
    Golestanirad L; Elahi B; Molina A; Mosig JR; Pollo C; Chen R; Graham SJ
    Front Neuroeng; 2013; 6():3. PubMed ID: 23874290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel fractal planar electrode design for efficient neural stimulation.
    Xuefeng Wei ; Benmassaoud M; Meller M; Kuchibhatla S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1802-1805. PubMed ID: 28268678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of high-perimeter planar electrodes for efficient neural stimulation.
    Wei XF; Grill WM
    Front Neuroeng; 2009; 2():15. PubMed ID: 19936312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iterative electrodes increase neural recruitment for deep brain stimulation.
    Wei XF; Iyengar N; DeMaria AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3419-22. PubMed ID: 26737027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High efficiency electrodes for deep brain stimulation.
    Grill WM; Wei XF
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3298-301. PubMed ID: 19964297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of planar microelectrode geometry on neuron stimulation: finite element modeling and experimental validation of the efficient electrode shape.
    Ghazavi A; Westwick D; Xu F; Wijdenes P; Syed N; Dalton C
    J Neurosci Methods; 2015 Jun; 248():51-8. PubMed ID: 25845480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A finite element method framework to model extracellular neural stimulation.
    Fellner A; Heshmat A; Werginz P; Rattay F
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35320783
    [No Abstract]   [Full Text] [Related]  

  • 10. A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS.
    Faria P; Hallett M; Miranda PC
    J Neural Eng; 2011 Dec; 8(6):066017. PubMed ID: 22086257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord direct current stimulation: finite element analysis of the electric field and current density.
    Hernández-Labrado GR; Polo JL; López-Dolado E; Collazos-Castro JE
    Med Biol Eng Comput; 2011 Apr; 49(4):417-29. PubMed ID: 21409426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of spinal cord stimulation profiles from intra- and extradural electrode arrangements by finite element modelling.
    Huang Q; Oya H; Flouty OE; Reddy CG; Howard MA; Gillies GT; Utz M
    Med Biol Eng Comput; 2014 Jun; 52(6):531-8. PubMed ID: 24771203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Transcutaneous Stimulation Electrodes for Wearable Neuroprostheses.
    RaviChandran N; Teo MY; Aw K; McDaid A
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1651-1660. PubMed ID: 32634102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation.
    Butson CR; McIntyre CC
    Clin Neurophysiol; 2005 Oct; 116(10):2490-500. PubMed ID: 16125463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2. quantitative analysis by computer modeling.
    Rattay F; Minassian K; Dimitrijevic MR
    Spinal Cord; 2000 Aug; 38(8):473-89. PubMed ID: 10962608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of different three-dimensional electrodes on epiretinal electrical stimulation by modeling analysis.
    Cao X; Sui X; Lyu Q; Li L; Chai X
    J Neuroeng Rehabil; 2015 Aug; 12():73. PubMed ID: 26311232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling.
    Im CH; Park JH; Shim M; Chang WH; Kim YH
    Phys Med Biol; 2012 Apr; 57(8):2137-50. PubMed ID: 22452936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractal Electrodes as a Generic Interface for Stimulating Neurons.
    Watterson WJ; Montgomery RD; Taylor RP
    Sci Rep; 2017 Jul; 7(1):6717. PubMed ID: 28751652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational model for the stimulation of rat sciatic nerve using a transverse intrafascicular multichannel electrode.
    Raspopovic S; Capogrosso M; Micera S
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):333-44. PubMed ID: 21693427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of high-perimeter electrode designs for deep brain stimulation.
    Howell B; Grill WM
    J Neural Eng; 2014 Aug; 11(4):046026. PubMed ID: 25029124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.