These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24109806)

  • 21. Minimizing activation of overlying axons with epiretinal stimulation: The role of fiber orientation and electrode configuration.
    Esler TB; Kerr RR; Tahayori B; Grayden DB; Meffin H; Burkitt AN
    PLoS One; 2018; 13(3):e0193598. PubMed ID: 29494655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epidural Stimulation of Rat Spinal Cord at Lumbosacral Segment Using a Surface Electrode: A Computer Simulation Study.
    Xu Q; Kong L; Zhou H; He J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1763-1772. PubMed ID: 27834648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrode array for reversing the recruitment order of peripheral nerve stimulation: experimental studies.
    Lertmanorat Z; Gustafson KJ; Durand DM
    Ann Biomed Eng; 2006 Jan; 34(1):152-60. PubMed ID: 16453204
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes.
    Howell B; Huynh B; Grill WM
    J Neural Eng; 2015 Aug; 12(4):046030. PubMed ID: 26170244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis.
    Datta A; Elwassif M; Battaglia F; Bikson M
    J Neural Eng; 2008 Jun; 5(2):163-74. PubMed ID: 18441418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational modeling of epidural cortical stimulation.
    Wongsarnpigoon A; Grill WM
    J Neural Eng; 2008 Dec; 5(4):443-54. PubMed ID: 19015584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. COMETS2: An advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation.
    Lee C; Jung YJ; Lee SJ; Im CH
    J Neurosci Methods; 2017 Feb; 277():56-62. PubMed ID: 27989592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of dielectrophoresis using fractal gold nanostructured electrodes.
    Koklu A; Sabuncu AC; Beskok A
    Electrophoresis; 2017 Jun; 38(11):1458-1465. PubMed ID: 28130914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Finite element analysis of a floating microstimulator.
    Sahin M; Ur-Rahman SS
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):227-34. PubMed ID: 17601192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Micro-channel sieve electrode for concurrent bidirectional peripheral nerve interface. Part B: stimulation.
    Coker RA; Zellmer ER; Moran DW
    J Neural Eng; 2019 Apr; 16(2):026002. PubMed ID: 30524078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of current density distributions generated by electrical stimulation of the human cerebral cortex.
    Nathan SS; Sinha SR; Gordon B; Lesser RP; Thakor NV
    Electroencephalogr Clin Neurophysiol; 1993 Mar; 86(3):183-92. PubMed ID: 7680994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Electrode Drift in Transcranial Direct Current Stimulation.
    Woods AJ; Bryant V; Sacchetti D; Gervits F; Hamilton R
    Brain Stimul; 2015; 8(3):515-9. PubMed ID: 25583653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation.
    Walckiers G; Fuchs B; Thiran JP; Mosig JR; Pollo C
    J Neurosci Methods; 2010 Jan; 186(1):90-6. PubMed ID: 19895845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of electrode-electrolyte spatial mismatch on transcranial direct current stimulation: a finite element modeling study.
    Chen L; Zou X; Tang R; Ke A; He J
    J Neural Eng; 2019 Aug; 16(5):056012. PubMed ID: 31195379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A spectral element method with adaptive segmentation for accurately simulating extracellular electrical stimulation of neurons.
    Eiber CD; Dokos S; Lovell NH; Suaning GJ
    Med Biol Eng Comput; 2017 May; 55(5):823-831. PubMed ID: 27541303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of microelectrodes for a visual cortical prosthesis using finite element analysis.
    Brunton E; Lowery AJ; Rajan R
    Front Neuroeng; 2012; 5():23. PubMed ID: 23060789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel electrode array for diameter-dependent control of axonal excitability: a simulation study.
    Lertmanorat Z; Durand DM
    IEEE Trans Biomed Eng; 2004 Jul; 51(7):1242-50. PubMed ID: 15248540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cortical Brain Stimulation with Endovascular Electrodes.
    Gerboni G; John SE; Ronayne SM; Rind GS; May CN; Oxley TJ; Grayden DB; Opie NL; Wong YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3088-3091. PubMed ID: 30441047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The physiological interpretation of electrical stimulation of the nervous system.
    Iggo A
    Electroencephalogr Clin Neurophysiol Suppl; 1978; (34):335-41. PubMed ID: 220004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.