These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24109825)

  • 1. Experimental evaluation of a model-based assistance-as-needed paradigm using an assistive robot.
    Carmichael MG; Liu D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():866-9. PubMed ID: 24109825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Admittance control scheme for implementing model-based assistance-as-needed on a robot.
    Carmichael MG; Liu D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():870-3. PubMed ID: 24109826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating physical assistance need using a musculoskeletal model.
    Carmichael MG; Liu D
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1912-9. PubMed ID: 23380850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A task description model for robotic rehabilitation.
    Carmichael MG; Liu D
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3086-9. PubMed ID: 23366577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of robotic assistance on upper limb spatial muscle synergies in healthy people during planar upper-limb training.
    Cancrini A; Baitelli P; Lavit Nicora M; Malosio M; Pedrocchi A; Scano A
    PLoS One; 2022; 17(8):e0272813. PubMed ID: 35939495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knee exoskeleton enhanced with artificial intelligence to provide assistance-as-needed.
    Lyu M; Chen WH; Ding X; Wang J
    Rev Sci Instrum; 2019 Sep; 90(9):094101. PubMed ID: 31575258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rehabilitation robot control framework with adaptation of training tasks and robotic assistance.
    Xu J; Huang K; Zhang T; Cao K; Ji A; Xu L; Li Y
    Front Bioeng Biotechnol; 2023; 11():1244550. PubMed ID: 37849981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online adaptive assistance control in robot-based neurorehabilitation therapy.
    Stroppa F; Marcheschi S; Mastronicola N; Loconsole C; Frisoli A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():628-633. PubMed ID: 28813890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic learning from demonstration of therapist's time-varying assistance to a patient in trajectory-following tasks.
    Najafi M; Adams K; Tavakoli M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():888-894. PubMed ID: 28813933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulsed assistance: a new paradigm of robot training.
    De Santis D; Masia L; Morasso P; Squeri V; Zenzeri J; Casadio M; Riva A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650504. PubMed ID: 24187319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance-based robotic assistance during rhythmic arm exercises.
    Leconte P; Ronsse R
    J Neuroeng Rehabil; 2016 Sep; 13(1):82. PubMed ID: 27623806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.
    Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X
    J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-Cooperative Approach for the Human-in-the-Loop Control of an End-Effector Rehabilitation Robot.
    Scotto di Luzio F; Simonetti D; Cordella F; Miccinilli S; Sterzi S; Draicchio F; Zollo L
    Front Neurorobot; 2018; 12():67. PubMed ID: 30364325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assistance Robotics and Biosensors 2019.
    Úbeda A; Torres F; Puente ST
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gastrocnemius myoelectric control of a robotic hip exoskeleton.
    Grazi L; Crea S; Parri A; Yan T; Cortese M; Giovacchini F; Cempini M; Pasquini G; Micera S; Vitiello N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3881-4. PubMed ID: 26737141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromyography Assessment of the Assistance Provided by an Upper-Limb Exoskeleton in Maintenance Tasks.
    Blanco A; Catalán JM; Díez JA; García JV; Lobato E; García-Aracil N
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement.
    Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of kinematic and EMG parameters between unassisted, fixed- and adaptive-stiffness robotic-assisted ankle movements in post-stroke subjects.
    Perez-Ibarra JC; Siqueira AAG
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():461-466. PubMed ID: 28813863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.