These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24109870)

  • 1. Analysis of neuronal cells of dissociated primary culture on high-density CMOS electrode array.
    Matsuda E; Mita T; Hubert J; Bakkum D; Frey U; Hierlemann A; Takahashi H; Ikegami T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1045-8. PubMed ID: 24109870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the temporal evolution of neuronal connectivity in cultured networks using statistical analysis.
    Napoli A; Xie J; Obeid I
    BMC Neurosci; 2014 Jan; 15():17. PubMed ID: 24443925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advantageous environment of micro-patterned, high-density complementary metal-oxide-semiconductor electrode array for spiral ganglion neurons cultured in vitro.
    Radotić V; Braeken D; Drviš P; Mattotti M; Kovačić D
    Sci Rep; 2018 May; 8(1):7446. PubMed ID: 29748613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 0.086-mm
    Frenkel C; Lefebvre M; Legat JD; Bol D
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):145-158. PubMed ID: 30418919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-organization of repetitive spike patterns in developing neuronal networks in vitro.
    Sun JJ; Kilb W; Luhmann HJ
    Eur J Neurosci; 2010 Oct; 32(8):1289-99. PubMed ID: 20846326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditional firing probabilities in cultured neuronal networks: a stable underlying structure in widely varying spontaneous activity patterns.
    le Feber J; Rutten WL; Stegenga J; Wolters PS; Ramakers GJ; van Pelt J
    J Neural Eng; 2007 Jun; 4(2):54-67. PubMed ID: 17409480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.
    Li X; Small M
    Chaos; 2012 Jun; 22(2):023104. PubMed ID: 22757511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-high-density in-vivo neural probes.
    Yazicioglu F; Lopez CM; Mitra S; Raducanu B; Musa S; Kloosterman F
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2032-5. PubMed ID: 25570383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sloppiness in spontaneously active neuronal networks.
    Panas D; Amin H; Maccione A; Muthmann O; van Rossum M; Berdondini L; Hennig MH
    J Neurosci; 2015 Jun; 35(22):8480-92. PubMed ID: 26041916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks.
    van Pelt J; Wolters PS; Corner MA; Rutten WL; Ramakers GJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2051-62. PubMed ID: 15536907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity.
    Rachmuth G; Shouval HZ; Bear MF; Poon CS
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):E1266-74. PubMed ID: 22089232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous activity and recurrent inhibition in cultured hippocampal networks.
    Siebler M; Köller H; Stichel CC; Müller HW; Freund HJ
    Synapse; 1993 Jul; 14(3):206-13. PubMed ID: 8211707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CMOS-based microelectrode array for interaction with neuronal cultures.
    Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A
    J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of neural population activity toward self-organized criticality.
    Yada Y; Mita T; Sanada A; Yano R; Kanzaki R; Bakkum DJ; Hierlemann A; Takahashi H
    Neuroscience; 2017 Feb; 343():55-65. PubMed ID: 27915209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale functional connectivity estimation on low-density neuronal cultures recorded by high-density CMOS Micro Electrode Arrays.
    Maccione A; Garofalo M; Nieus T; Tedesco M; Berdondini L; Martinoia S
    J Neurosci Methods; 2012 Jun; 207(2):161-71. PubMed ID: 22516778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural networks on chemically patterned electrode arrays: towards a cultured probe.
    Rutten WL; Ruardij TG; Marani E; Roelofsen BH
    Acta Neurochir Suppl; 2007; 97(Pt 2):547-54. PubMed ID: 17691346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental short-term memory of semi-artificial neuronal network.
    Ito H; Kudoh SN
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():811-4. PubMed ID: 24109811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spike Code Flow in Cultured Neuronal Networks.
    Tamura S; Nishitani Y; Hosokawa C; Miyoshi T; Sawai H; Kamimura T; Yagi Y; Mizuno-Matsumoto Y; Chen YW
    Comput Intell Neurosci; 2016; 2016():7267691. PubMed ID: 27217825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking burst patterns in hippocampal cultures with high-density CMOS-MEAs.
    Gandolfo M; Maccione A; Tedesco M; Martinoia S; Berdondini L
    J Neural Eng; 2010 Oct; 7(5):056001. PubMed ID: 20720282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self-adapting approach for the detection of bursts and network bursts in neuronal cultures.
    Pasquale V; Martinoia S; Chiappalone M
    J Comput Neurosci; 2010 Aug; 29(1-2):213-229. PubMed ID: 19669401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.