These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 24109983)
1. Analysis of selective constraints on mitochondrial DNA, flight ability and physiological index on avian. Zhang S; Han J; Zhong D; Wang T Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1498-501. PubMed ID: 24109983 [TBL] [Abstract][Full Text] [Related]
2. Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability. Shen YY; Shi P; Sun YB; Zhang YP Genome Res; 2009 Oct; 19(10):1760-5. PubMed ID: 19617397 [TBL] [Abstract][Full Text] [Related]
3. Flight speeds among bird species: allometric and phylogenetic effects. Alerstam T; Rosén M; Bäckman J; Ericson PG; Hellgren O PLoS Biol; 2007 Aug; 5(8):e197. PubMed ID: 17645390 [TBL] [Abstract][Full Text] [Related]
4. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency. Thielicke W; Stamhuis EJ Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756 [TBL] [Abstract][Full Text] [Related]
5. Phylogenetic and kinematic constraints on avian flight signals. Berg KS; Delgado S; Mata-Betancourt A Proc Biol Sci; 2019 Sep; 286(1911):20191083. PubMed ID: 31530147 [TBL] [Abstract][Full Text] [Related]
6. Wing morphology, flight type and migration distance predict accumulated fuel load in birds. Vincze O; Vágási CI; Pap PL; Palmer C; Møller AP J Exp Biol; 2019 Jan; 222(Pt 1):. PubMed ID: 30446537 [TBL] [Abstract][Full Text] [Related]
7. Evolution of avian flight: muscles and constraints on performance. Tobalske BW Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528773 [TBL] [Abstract][Full Text] [Related]
8. Flight mode affects allometry of migration range in birds. Watanabe YY Ecol Lett; 2016 Aug; 19(8):907-14. PubMed ID: 27305867 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary rates of and selective constraints on the mitochondrial genomes of Orthoptera insects with different wing types. Chang H; Qiu Z; Yuan H; Wang X; Li X; Sun H; Guo X; Lu Y; Feng X; Majid M; Huang Y Mol Phylogenet Evol; 2020 Apr; 145():106734. PubMed ID: 31972240 [TBL] [Abstract][Full Text] [Related]
10. Environmental niche and flight intensity are associated with molecular evolutionary rates in a large avian radiation. Montoya P; Cadena CD; Claramunt S; Duchêne DA BMC Ecol Evol; 2022 Aug; 22(1):95. PubMed ID: 35918644 [TBL] [Abstract][Full Text] [Related]
11. Community science reveals links between migration arrival timing advance, migration distance and wing shape. Chu JJ; Gillis DP; Riskin SH J Anim Ecol; 2022 Aug; 91(8):1651-1665. PubMed ID: 35668666 [TBL] [Abstract][Full Text] [Related]
12. Limited locomotive ability relaxed selective constraints on molluscs mitochondrial genomes. Sun S; Li Q; Kong L; Yu H Sci Rep; 2017 Sep; 7(1):10628. PubMed ID: 28878314 [TBL] [Abstract][Full Text] [Related]
13. Range of motion in the avian wing is strongly associated with flight behavior and body mass. Baliga VB; Szabo I; Altshuler DL Sci Adv; 2019 Oct; 5(10):eaaw6670. PubMed ID: 31681840 [TBL] [Abstract][Full Text] [Related]
14. Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds. Nudds RL; Taylor GK; Thomas AL Proc Biol Sci; 2004 Oct; 271(1552):2071-6. PubMed ID: 15451698 [TBL] [Abstract][Full Text] [Related]
15. The gliding speed of migrating birds: slow and safe or fast and risky? Horvitz N; Sapir N; Liechti F; Avissar R; Mahrer I; Nathan R Ecol Lett; 2014 Jun; 17(6):670-9. PubMed ID: 24641086 [TBL] [Abstract][Full Text] [Related]
16. Flight modes in migrating European bee-eaters: heart rate may indicate low metabolic rate during soaring and gliding. Sapir N; Wikelski M; McCue MD; Pinshow B; Nathan R PLoS One; 2010 Nov; 5(11):e13956. PubMed ID: 21085655 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous Wing Molt as a Catalyst for the Evolution of Flightlessness in Birds. Terrill RS Am Nat; 2020 Dec; 196(6):775-784. PubMed ID: 33211563 [TBL] [Abstract][Full Text] [Related]
19. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke. Nudds RL; Dyke GJ Evolution; 2009 Apr; 63(4):994-1002. PubMed ID: 19154383 [TBL] [Abstract][Full Text] [Related]
20. Flapping wing aerodynamics: from insects to vertebrates. Chin DD; Lentink D J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]