These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24110003)

  • 1. NeuroRex: a clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton.
    Contreras-Vidal JL; Grossman RG
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1579-82. PubMed ID: 24110003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated neuro-robotic interface for stroke rehabilitation using the NASA X1 powered lower limb exoskeleton.
    He Y; Nathan K; Venkatakrishnan A; Rovekamp R; Beck C; Ozdemir R; Francisco GE; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3985-8. PubMed ID: 25570865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton.
    Kilicarslan A; Prasad S; Grossman RG; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5606-9. PubMed ID: 24111008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-machine interfaces for controlling lower-limb powered robotic systems.
    He Y; Eguren D; Azorín JM; Grossman RG; Luu TP; Contreras-Vidal JL
    J Neural Eng; 2018 Apr; 15(2):021004. PubMed ID: 29345632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG-Based Detection of Starting and Stopping During Gait Cycle.
    Hortal E; Úbeda A; Iáñez E; Azorín JM; Fernández E
    Int J Neural Syst; 2016 Nov; 26(7):1650029. PubMed ID: 27354191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients.
    Donati AR; Shokur S; Morya E; Campos DS; Moioli RC; Gitti CM; Augusto PB; Tripodi S; Pires CG; Pereira GA; Brasil FL; Gallo S; Lin AA; Takigami AK; Aratanha MA; Joshi S; Bleuler H; Cheng G; Rudolph A; Nicolelis MA
    Sci Rep; 2016 Aug; 6():30383. PubMed ID: 27513629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous scalp electroencephalography (EEG), electromyography (EMG), and whole-body segmental inertial recording for multi-modal neural decoding.
    Bulea TC; Kilicarslan A; Ozdemir R; Paloski WH; Contreras-Vidal JL
    J Vis Exp; 2013 Jul; (77):. PubMed ID: 23912203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudo-Online BMI Based on EEG to Detect the Appearance of Sudden Obstacles during Walking.
    Elvira M; Iáñez E; Quiles V; Ortiz M; Azorín JM
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of stand-to-sit and sit-to-stand movement from low frequency EEG with locality preserving dimensionality reduction.
    Bulea TC; Prasad S; Kilicarslan A; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6341-4. PubMed ID: 24111191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of a semi-autonomous hybrid brain-machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic.
    McMullen DP; Hotson G; Katyal KD; Wester BA; Fifer MS; McGee TG; Harris A; Johannes MS; Vogelstein RJ; Ravitz AD; Anderson WS; Thakor NV; Crone NE
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):784-96. PubMed ID: 24760914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing surface EMG from scalp EEG during myoelectric control of a closed looped prosthetic device.
    Paek AY; Brown JD; Gillespie RB; O'Malley MK; Shewokis PA; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5602-5. PubMed ID: 24111007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural decoding of treadmill walking from noninvasive electroencephalographic signals.
    Presacco A; Goodman R; Forrester L; Contreras-Vidal JL
    J Neurophysiol; 2011 Oct; 106(4):1875-87. PubMed ID: 21768121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of an Exoskeleton-Assisted Gait Motor Imagery Training in Functional Brain Connectivity.
    Gaxiola-Tirado JA; Ianez E; Ortiz M; Gutierrez D; Azorin JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():429-432. PubMed ID: 31945930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals.
    Rajasekaran V; López-Larraz E; Trincado-Alonso F; Aranda J; Montesano L; Del-Ama AJ; Pons JL
    J Neuroeng Rehabil; 2018 Jan; 15(1):4. PubMed ID: 29298691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals.
    Hayes SC; White M; White HSF; Vanicek N
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105133. PubMed ID: 32777685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of an Ambulatory Exoskeleton with a Brain-Machine Interface for Spinal Cord Injury Gait Rehabilitation.
    López-Larraz E; Trincado-Alonso F; Rajasekaran V; Pérez-Nombela S; Del-Ama AJ; Aranda J; Minguez J; Gil-Agudo A; Montesano L
    Front Neurosci; 2016; 10():359. PubMed ID: 27536214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving robotic stroke rehabilitation by incorporating neural intent detection: Preliminary results from a clinical trial.
    Sullivan JL; Bhagat NA; Yozbatiran N; Paranjape R; Losey CG; Grossman RG; Contreras-Vidal JL; Francisco GE; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():122-127. PubMed ID: 28813805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A brain-controlled lower-limb exoskeleton for human gait training.
    Liu D; Chen W; Pei Z; Wang J
    Rev Sci Instrum; 2017 Oct; 88(10):104302. PubMed ID: 29092520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting movement intent from scalp EEG in a novel upper limb robotic rehabilitation system for stroke.
    Bhagat NA; French J; Venkatakrishnan A; Yozbatiran N; Francisco GE; O'Malley MK; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4127-4130. PubMed ID: 25570900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.