These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24110005)

  • 1. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes.
    Young AJ; Simon A; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A training method for locomotion mode prediction using powered lower limb prostheses.
    Young AJ; Simon AM; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):671-7. PubMed ID: 24184753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ambulation Mode Classification of Individuals with Transfemoral Amputation through A-Mode Sonomyography and Convolutional Neural Networks.
    Murray R; Mendez J; Gabert L; Fey NP; Liu H; Lenzi T
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intent recognition in a powered lower limb prosthesis using time history information.
    Young AJ; Simon AM; Fey NP; Hargrove LJ
    Ann Biomed Eng; 2014 Mar; 42(3):631-41. PubMed ID: 24052324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Classification Method for User-Independent Intent Recognition for Transfemoral Amputees Using Powered Lower Limb Prostheses.
    Young AJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):217-25. PubMed ID: 25794392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locomotion mode identification for lower limbs using neuromuscular and joint kinematic signals.
    Afzal T; White G; Wright AB; Iqbal K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4071-4. PubMed ID: 25570886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intuitive control of a powered prosthetic leg during ambulation: a randomized clinical trial.
    Hargrove LJ; Young AJ; Simon AM; Fey NP; Lipschutz RD; Finucane SB; Halsne EG; Ingraham KA; Kuiken TA
    JAMA; 2015 Jun; 313(22):2244-52. PubMed ID: 26057285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees.
    Khademi G; Mohammadi H; Simon D
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes.
    Simon AM; Ingraham KA; Fey NP; Finucane SB; Lipschutz RD; Young AJ; Hargrove LJ
    PLoS One; 2014; 9(6):e99387. PubMed ID: 24914674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies to reduce the configuration time for a powered knee and ankle prosthesis across multiple ambulation modes.
    Simon AM; Fey NP; Finucane SB; Lipschutz RD; Hargrove LJ
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650371. PubMed ID: 24187190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Method for Locomotion Mode Identification Using Muscle Synergies.
    Afzal T; Iqbal K; White G; Wright AB
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):608-617. PubMed ID: 27362983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Improved Extreme Learning Machine (ELM) Algorithm for Intent Recognition of Transfemoral Amputees With Powered Knee Prosthesis.
    Zhang Y; Wang X; Xiu H; Chen W; Ma Y; Wei G; Ren L; Ren L
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1757-1766. PubMed ID: 38683719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system.
    Abdulhasan ZM; Scally AJ; Buckley JG
    Clin Biomech (Bristol, Avon); 2018 Aug; 57():35-41. PubMed ID: 29908391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crossover study of amputee stair ascent and descent biomechanics using Genium and C-Leg prostheses with comparison to non-amputee control.
    Lura DJ; Wernke MW; Carey SL; Kahle JT; Miro RM; Highsmith MJ
    Gait Posture; 2017 Oct; 58():103-107. PubMed ID: 28763712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions.
    Zhang F; Liu M; Huang H
    PLoS One; 2015; 10(7):e0133965. PubMed ID: 26197084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IMU-Based Classification of Locomotion Modes, Transitions, and Gait Phases with Convolutional Recurrent Neural Networks.
    Marcos Mazon D; Groefsema M; Schomaker LRB; Carloni R
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Across-user adaptation for a powered lower limb prosthesis.
    Spanias JA; Simon AM; Hargrove LJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1580-1583. PubMed ID: 28814045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. User intent prediction with a scaled conjugate gradient trained artificial neural network for lower limb amputees using a powered prosthesis.
    Woodward RB; Spanias JA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6405-6408. PubMed ID: 28325033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.