These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 24110008)

  • 1. Pattern recognition control outperforms conventional myoelectric control in upper limb patients with targeted muscle reinnervation.
    Hargrove LJ; Lock BA; Simon AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1599-602. PubMed ID: 24110008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adapting myoelectric control in real-time using a virtual environment.
    Woodward RB; Hargrove LJ
    J Neuroeng Rehabil; 2019 Jan; 16(1):11. PubMed ID: 30651109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current Trends and Confounding Factors in Myoelectric Control: Limb Position and Contraction Intensity.
    Campbell E; Phinyomark A; Scheme E
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the influence of confounding factors in myoelectric control for discrete gesture recognition.
    Eddy E; Campbell E; Bateman S; Scheme E
    J Neural Eng; 2024 May; 21(3):. PubMed ID: 38722304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limb-position robust classification of myoelectric signals for prosthesis control using sparse representations.
    Betthauser JL; Hunt CL; Osborn LE; Kaliki RR; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6373-6376. PubMed ID: 28325032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionally Adaptive Myosite Selection Using High-Density sEMG for Upper Limb Myoelectric Prostheses.
    Greene RJ; Hunt C; Kumar S; Betthauser J; Routkevitch D; Kaliki RR; Thakor NV
    IEEE Trans Biomed Eng; 2023 Oct; 70(10):2980-2990. PubMed ID: 37192038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted muscle reinnervation in upper extremity amputations.
    Le ELH; Iorio ML; Greyson MA
    Eur J Orthop Surg Traumatol; 2023 Oct; ():. PubMed ID: 37814069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A parallel classification strategy to simultaneous control elbow, wrist, and hand movements.
    Leone F; Gentile C; Cordella F; Gruppioni E; Guglielmelli E; Zollo L
    J Neuroeng Rehabil; 2022 Jan; 19(1):10. PubMed ID: 35090512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control Strategies and Performance Assessment of Upper-Limb TMR Prostheses: A Review.
    Mereu F; Leone F; Gentile C; Cordella F; Gruppioni E; Zollo L
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33802231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical evaluation of the revolutionizing prosthetics modular prosthetic limb system for upper extremity amputees.
    Yu KE; Perry BN; Moran CW; Armiger RS; Johannes MS; Hawkins A; Stentz L; Vandersea J; Tsao JW; Pasquina PF
    Sci Rep; 2021 Jan; 11(1):954. PubMed ID: 33441604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuro-Musculoskeletal Mapping for Man-Machine Interfacing.
    Kapelner T; Sartori M; Negro F; Farina D
    Sci Rep; 2020 Apr; 10(1):5834. PubMed ID: 32242142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining User Intent of Partly Dynamic Shoulder Tasks in Individuals With Chronic Stroke Using Pattern Recognition.
    Kopke JV; Ellis MD; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):350-358. PubMed ID: 31751245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EMG Pattern Recognition Control of the DEKA Arm: Impact on User Ratings of Satisfaction and Usability.
    Resnik L; Acluche F; Borgia M; Latlief G; Phillips S
    IEEE J Transl Eng Health Med; 2019; 7():2100113. PubMed ID: 30680253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of an LDA Classifier for Determining User-Intent in Multi-DOF Quasi-Static Shoulder Tasks in Individuals with Chronic Stroke: Preliminary Analysis.
    Kopke JV; Hargrove LJ; Ellis MD
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2312-2315. PubMed ID: 30440869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. User experience of controlling the DEKA Arm with EMG pattern recognition.
    Resnik LJ; Acluche F; Lieberman Klinger S
    PLoS One; 2018; 13(9):e0203987. PubMed ID: 30240420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time, simultaneous myoelectric control using a convolutional neural network.
    Ameri A; Akhaee MA; Scheme E; Englehart K
    PLoS One; 2018; 13(9):e0203835. PubMed ID: 30212573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two ways to improve myoelectric control for a transhumeral amputee after targeted muscle reinnervation: a case study.
    Xu Y; Zhang D; Wang Y; Feng J; Xu W
    J Neuroeng Rehabil; 2018 May; 15(1):37. PubMed ID: 29747672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myoelectric Pattern Recognition Outperforms Direct Control for Transhumeral Amputees with Targeted Muscle Reinnervation: A Randomized Clinical Trial.
    Hargrove LJ; Miller LA; Turner K; Kuiken TA
    Sci Rep; 2017 Oct; 7(1):13840. PubMed ID: 29062019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time simulation of hand motion for prosthesis control.
    Blana D; Chadwick EK; van den Bogert AJ; Murray WM
    Comput Methods Biomech Biomed Engin; 2017 Apr; 20(5):540-549. PubMed ID: 27868425
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.