These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 24110039)

  • 1. Comparison between red, green and blue light reflection photoplethysmography for heart rate monitoring during motion.
    Lee J; Matsumura K; Yamakoshi K; Rolfe P; Tanaka S; Yamakoshi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1724-7. PubMed ID: 24110039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iPhone 4s photoplethysmography: which light color yields the most accurate heart rate and normalized pulse volume using the iPhysioMeter Application in the presence of motion artifact?
    Matsumura K; Rolfe P; Lee J; Yamakoshi T
    PLoS One; 2014; 9(3):e91205. PubMed ID: 24618594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate Heart Rate Monitoring During Physical Exercises Using PPG.
    Temko A
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2016-2024. PubMed ID: 28278454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of reflected green light and infrared photoplethysmography.
    Maeda Y; Sekine M; Tamura T; Moriya A; Suzuki T; Kameyama K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2270-2. PubMed ID: 19163152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between measurement site and motion artifacts in wearable reflected photoplethysmography.
    Maeda Y; Sekine M; Tamura T
    J Med Syst; 2011 Oct; 35(5):969-76. PubMed ID: 20703691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heart rate variability (HRV) in deep breathing tests and 5-min short-term recordings: agreement of ear photoplethysmography with ECG measurements, in 343 subjects.
    Weinschenk SW; Beise RD; Lorenz J
    Eur J Appl Physiol; 2016 Aug; 116(8):1527-35. PubMed ID: 27278521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards Photoplethysmography-Based Estimation of Instantaneous Heart Rate During Physical Activity.
    Jarchi D; Casson AJ
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2042-2053. PubMed ID: 28212075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual Wavelength Photoplethysmography Framework for Heart Rate Calculation.
    Alkhoury L; Choi J; Chandran VD; De Carvalho GB; Pal S; Kam M
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of PurePulse photoplethysmography technology of Fitbit Charge 2 for assessment of heart rate during sleep.
    Haghayegh S; Khoshnevis S; Smolensky MH; Diller KR
    Chronobiol Int; 2019 Jul; 36(7):927-933. PubMed ID: 30990098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG.
    Liu J; Li Y; Ding XR; Dai WX; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5973-6. PubMed ID: 26737652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring of Heart Rate from Photoplethysmographic Signals Using a Samsung Galaxy Note8 in Underwater Environments.
    Askarian B; Jung K; Chong JW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31248022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffuse transmittance visible spectroscopy using smartphone flashlight for photoplethysmography and vital signs measurements.
    Bachir W
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123181. PubMed ID: 37506454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The advantages of wearable green reflected photoplethysmography.
    Maeda Y; Sekine M; Tamura T
    J Med Syst; 2011 Oct; 35(5):829-34. PubMed ID: 20703690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of Motion Artifacts in Photoplethysmograph Sensors during Intensive Exercise for Accurate Heart Rate Calculation Based on Frequency Estimation and Notch Filtering.
    Wang M; Li Z; Zhang Q; Wang G
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31357674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous heart rhythm monitoring using mobile photoplethysmography in ambulatory patients.
    Hochstadt A; Havakuk O; Chorin E; Schwartz AL; Merdler I; Laufer M; Lubman N; Ghantous E; Viskin S; Rosso R
    J Electrocardiol; 2020; 60():138-141. PubMed ID: 32361522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heart rate monitoring from wrist-type PPG based on singular spectrum analysis with motion decision.
    Yang Wang ; Zhiwen Liu ; Bin Dong
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3511-3514. PubMed ID: 28269055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blue as an Underrated Alternative to Green: Photoplethysmographic Heartbeat Intervals Estimation under Two Temperature Conditions.
    Shchelkanova E; Shchapova L; Shchelkanov A; Shibata T
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A solution for co-frequency and low SNR problems in heart rate estimation based on photoplethysmography signals.
    Zhao J; Chen X; Zhang X; Chen X
    Med Biol Eng Comput; 2022 Dec; 60(12):3419-3433. PubMed ID: 36190610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MICROST: A mixed approach for heart rate monitoring during intensive physical exercise using wrist-type PPG Signals.
    Zhu S; Tan K; Zhang X; Liu Z; Liu B
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2347-50. PubMed ID: 26736764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features.
    Dao D; Salehizadeh SMA; Noh Y; Chong JW; Cho CH; McManus D; Darling CE; Mendelson Y; Chon KH
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1242-1253. PubMed ID: 28113791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.