BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24110091)

  • 1. Ultrasonic guided waves dispersion reversal for long bone thickness evaluation: a simulation study.
    Xu K; Liu C; Ta D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1930-3. PubMed ID: 24110091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wideband dispersion reversal of lamb waves.
    Xu K; Ta D; Hu B; Laugier P; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):997-1005. PubMed ID: 24859663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of guided mode propagation in fractured long bones.
    Xu K; Liu D; Ta D; Hu B; Wang W
    Ultrasonics; 2014 Jul; 54(5):1210-8. PubMed ID: 24139020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transverse and Oblique Long Bone Fracture Evaluation by Low Order Ultrasonic Guided Waves: A Simulation Study.
    Li Y; Liu D; Xu K; Ta D; Le LH; Wang W
    Biomed Res Int; 2017; 2017():3083141. PubMed ID: 28182135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone.
    Ta D; Wang W; Wang Y; Le LH; Zhou Y
    Ultrasound Med Biol; 2009 Apr; 35(4):641-52. PubMed ID: 19153000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring the wavenumber of guided modes in waveguides with linearly varying thickness.
    Moreau L; Minonzio JG; Talmant M; Laugier P
    J Acoust Soc Am; 2014 May; 135(5):2614-24. PubMed ID: 24815245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiridge-based analysis for separating individual modes from multimodal guided wave signals in long bones.
    Xu K; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2480-90. PubMed ID: 21041135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission analysis of ultrasonic Lamb mode conversion in a plate with partial-thickness notch.
    Xu K; Ta D; Su Z; Wang W
    Ultrasonics; 2014 Jan; 54(1):395-401. PubMed ID: 23916666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Ultrasonic Guided Wave Propagation in Multilayered Bone Structure With Varying Soft-Tissue Thickness in View of Cortical Bone Characterization.
    Tran TNHT; Le LH; Ta D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):147-155. PubMed ID: 34520355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axial transmission method for long bone fracture evaluation by ultrasonic guided waves: simulation, phantom and in vitro experiments.
    Xu K; Ta D; He R; Qin YX; Wang W
    Ultrasound Med Biol; 2014 Apr; 40(4):817-27. PubMed ID: 24433749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of superimposed ultrasonic guided waves in long bones by the joint approximate diagonalization of eigen-matrices algorithm.
    Song X; Ta D; Wang W
    Ultrasound Med Biol; 2011 Oct; 37(10):1704-13. PubMed ID: 21924208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity analysis of ultrasonic guided waves propagating in trilayered bone models: a numerical study.
    Tran TNHT; Le LH; Sacchi MD; Nguyen VH
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1269-1279. PubMed ID: 29777322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation of two longitudinal waves in a cancellous bone with the closed pore boundary.
    Mizuno K; Nagatani Y; Yamashita K; Matsukawa M
    J Acoust Soc Am; 2011 Aug; 130(2):EL122-7. PubMed ID: 21877770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic guided waves in bone.
    Moilanen P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1277-86. PubMed ID: 18599415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia.
    Lee KI; Yoon SW
    J Acoust Soc Am; 2004 Jun; 115(6):3210-7. PubMed ID: 15237845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of optical transmissivity on signal characteristics of photoacoustic guided waves in long cortical bone.
    Chen H; Xu K; Liu X; Li Y; Liu Z; Ta D
    Ultrasonics; 2022 Dec; 126():106816. PubMed ID: 35914378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods.
    Hosokawa A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Analysis of Ultrasonic Guided Waves for Cortical Bone Characterization.
    Li Y; Xu K; Li Y; Xu F; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):935-951. PubMed ID: 32956055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerical study on the propagation of Rayleigh and guided waves in cortical bone according to Mindlin's Form II gradient elastic theory.
    Papacharalampopoulos A; Vavva MG; Protopappas VC; Fotiadis DI; Polyzos D
    J Acoust Soc Am; 2011 Aug; 130(2):1060-70. PubMed ID: 21877818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrogram decomposition of ultrasonic guided waves for cortical thickness assessment using basis learning.
    Gu M; Li Y; Tran TNHT; Song X; Shi Q; Xu K; Ta D
    Ultrasonics; 2022 Mar; 120():106665. PubMed ID: 34968990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.