These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24110148)

  • 1. Low-power hardware for neural spike compression in BMIs.
    Lapolli ÂC; Coppa B; Héliot R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2156-9. PubMed ID: 24110148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-cost intracortical spiking recordings compression with classification abilities for implanted BMI devices.
    Coppa B; Héliot R; Michel O; Moisan E; David D
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2623-6. PubMed ID: 23366463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibration-Free and Hardware-Efficient Neural Spike Detection for Brain Machine Interfaces.
    Zhang Z; Feng P; Oprea A; Constandinou TG
    IEEE Trans Biomed Circuits Syst; 2023 Aug; 17(4):725-740. PubMed ID: 37216253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact and Low-Power Neural Spike Compression Using Undercomplete Autoencoders.
    Thies J; Alimohammad A
    IEEE Trans Neural Syst Rehabil Eng; 2019 Aug; 27(8):1529-1538. PubMed ID: 31331895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for compression of intra-cortically-recorded neural signals dedicated to implantable brain-machine interfaces.
    Shaeri MA; Sodagar AM
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):485-97. PubMed ID: 25222949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 10.8 µW Neural Signal Recorder and Processor With Unsupervised Analog Classifier for Spike Sorting.
    Hao H; Chen J; Richardson A; Van der Spiegel J; Aflatouni F
    IEEE Trans Biomed Circuits Syst; 2021 Apr; 15(2):351-364. PubMed ID: 33909570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power-efficient
    Valencia D; Leone G; Keller N; Mercier PP; Alimohammad A
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36645913
    [No Abstract]   [Full Text] [Related]  

  • 8. Spike sorting algorithms and their efficient hardware implementation: a comprehensive survey.
    Zhang T; Rahimi Azghadi M; Lammie C; Amirsoleimani A; Genov R
    J Neural Eng; 2023 Apr; 20(2):. PubMed ID: 36972585
    [No Abstract]   [Full Text] [Related]  

  • 9. Data compression in brain-machine/computer interfaces based on the Walsh-Hadamard transform.
    Hosseini-Nejad H; Jannesari A; Sodagar AM
    IEEE Trans Biomed Circuits Syst; 2014 Feb; 8(1):129-37. PubMed ID: 24681926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A closed-loop compressive-sensing-based neural recording system.
    Zhang J; Mitra S; Suo Y; Cheng A; Xiong T; Michon F; Welkenhuysen M; Kloosterman F; Chin PS; Hsiao S; Tran TD; Yazicioglu F; Etienne-Cummings R
    J Neural Eng; 2015 Jun; 12(3):036005. PubMed ID: 25874929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spike Detection Technique Based on Spike Augmentation with Low Computational and Hardware Complexity.
    Mirzaei S; Hosseini-Nejad H; Sodagar AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():894-897. PubMed ID: 33018128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frameworks for Efficient Brain-Computer Interfacing.
    Valencia D; Thies J; Alimohammad A
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1714-1722. PubMed ID: 31613780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 0.7 V, 40 nW Compact, Current-Mode Neural Spike Detector in 65 nm CMOS.
    Yao E; Chen Y; Basu A
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):309-18. PubMed ID: 26168445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Efficient Hardware Architecture for Template Matching-Based Spike Sorting.
    Valencia D; Alimohammad A
    IEEE Trans Biomed Circuits Syst; 2019 Jun; 13(3):481-492. PubMed ID: 30932848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hardware-Efficient Scalable Spike Sorting Neural Signal Processor Module for Implantable High-Channel-Count Brain Machine Interfaces.
    Yang Y; Boling S; Mason AJ
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):743-754. PubMed ID: 28541908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Streaming PCA VLSI Chip for Neural Data Compression.
    Wu T; Zhao W; Guo H; Lim HH; Yang Z
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1290-1302. PubMed ID: 28809707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep compressive autoencoder for action potential compression in large-scale neural recording.
    Wu T; Zhao W; Keefer E; Yang Z
    J Neural Eng; 2018 Dec; 15(6):066019. PubMed ID: 30215605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An unsupervised method for on-chip neural spike detection in multi-electrode recording systems.
    Dragas J; Jäckel D; Franke F; Hierlemann A
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2535-8. PubMed ID: 24110243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algorithm and hardware considerations for real-time neural signal on-implant processing.
    Zhang Z; Savolainen OW; Constandinou TG
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35130536
    [No Abstract]   [Full Text] [Related]  

  • 20. Impact of compressed sensing of motor cortical activity on spike train decoding in Brain Machine Interfaces.
    Aghagolzadeh M; Shetliffe M; Oweiss KG
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5302-5. PubMed ID: 19163914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.