BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24110192)

  • 21. Tradeoffs between image quality and dose.
    Seibert JA
    Pediatr Radiol; 2004 Oct; 34 Suppl 3():S183-95; discussion S234-41. PubMed ID: 15558260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dose optimisation of double-contrast barium enema examinations.
    Berner K; Båth M; Jonasson P; Cappelen-Smith J; Fogelstam P; Söderberg J
    Radiat Prot Dosimetry; 2010; 139(1-3):388-92. PubMed ID: 20231164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategies for dose reduction in ordinary radiographic examinations using CR and DR.
    Willis CE
    Pediatr Radiol; 2004 Oct; 34 Suppl 3():S196-200; discussion S234-41. PubMed ID: 15558261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Post-processing image filtration enabling dose reduction in standard abdominal CT.
    Leander P; Söderberg M; Fält T; Gunnarsson M; Albertsson I
    Radiat Prot Dosimetry; 2010; 139(1-3):180-5. PubMed ID: 20207748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Study of image quality (contrast) and reduction of patient dose by using heavy metal filters].
    Oishi Y; Sano Y; Yoshida K; Iwanaga H; Yasui K; Fujimoto K; Nishimura H; Otsuka A; Sanada T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2002 Jan; 58(1):109-14. PubMed ID: 12527881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental assessment of the influence of beam hardening filters on image quality and patient dose in volumetric 64-slice X-ray CT scanners.
    Ay MR; Mehranian A; Maleki A; Ghadiri H; Ghafarian P; Zaidi H
    Phys Med; 2013 May; 29(3):249-60. PubMed ID: 22541061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compensation filtration in paediatric double contrast barium enema examinations.
    Sprigg A; Gough LM; Stringer DA; Daneman A
    Clin Radiol; 1986 Nov; 37(6):599-601. PubMed ID: 3791861
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feasibility of real time dual-energy imaging based on a flat panel detector for coronary artery calcium quantification.
    Xu T; Ducote JL; Wong JT; Molloi S
    Med Phys; 2006 Jun; 33(6):1612-22. PubMed ID: 16872069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chest radiography with a flat-panel detector: image quality with dose reduction after copper filtration.
    Hamer OW; Sirlin CB; Strotzer M; Borisch I; Zorger N; Feuerbach S; Völk M
    Radiology; 2005 Nov; 237(2):691-700. PubMed ID: 16192324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An investigation into techniques for reducing doses from neo-natal radiographic examinations.
    Wraith CM; Martin CJ; Stockdale EJ; McDonald S; Farquhar B
    Br J Radiol; 1995 Oct; 68(814):1074-82. PubMed ID: 7496707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dose reduction in digital chest radiography and perceived image quality.
    Kroft LJ; Veldkamp WJ; Mertens BJ; van Delft JP; Geleijns J
    Br J Radiol; 2007 Dec; 80(960):984-8. PubMed ID: 17940130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Erbium filtration: a cost-effective, dose-reducing filter which maintains abdominal image quality.
    Doyle CA; Brennan PC
    Eur Radiol; 1999; 9(9):1923-5. PubMed ID: 10602978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of beam energy and filtration on the signal-to-noise ratio of the Dexis intraoral X-ray detector.
    Kitagawa H; Farman AG
    Dentomaxillofac Radiol; 2004 Jan; 33(1):21-4. PubMed ID: 15140818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduced radiation dose and improved image quality using a mini mobile digital imaging system in a neonatal intensive care unit.
    Kim TH; Ryu JH; Jeong CW; Jun HY; Heo DW; Lee SH; Oh YK; Lee MJ; Yoon KH
    Clin Imaging; 2017; 42():165-171. PubMed ID: 28064140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of a flat-panel based real time dual-energy system for cardiac imaging.
    Ducote JL; Xu T; Molloi S
    Med Phys; 2006 Jun; 33(6):1562-8. PubMed ID: 16872063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimizing image quality and dose for digital radiography of distal pediatric extremities using the contrast-to-noise ratio.
    Hess R; Neitzel U
    Rofo; 2012 Jul; 184(7):643-9. PubMed ID: 22618480
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Image quality assessment with dose reduction using high kVp and additional filtration for abdominal digital radiography.
    Jang JS; Yang HJ; Koo HJ; Kim SH; Park CR; Yoon SH; Shin SY; Do KH
    Phys Med; 2018 Jun; 50():46-51. PubMed ID: 29891093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dose reduction in a paediatric X-ray department following optimization of radiographic technique.
    Mooney R; Thomas PS
    Br J Radiol; 1998 Aug; 71(848):852-60. PubMed ID: 9828798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iterative scatter correction for grid-less skeletal radiography allows improved image quality equal to an antiscatter grid in adjunct with dose reduction: a visual grading study of 20 body donors.
    Lisson CG; Lisson CS; Kleiner S; Regier M; Beer M; Schmidt SA
    Acta Radiol; 2019 Jun; 60(6):735-741. PubMed ID: 30149748
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager.
    Deschênes S; Charron G; Beaudoin G; Labelle H; Dubois J; Miron MC; Parent S
    Spine (Phila Pa 1976); 2010 Apr; 35(9):989-94. PubMed ID: 20228703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.