These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24110213)

  • 21. High-purity capture of CTCs based on micro-beads enhanced isolation by size of epithelial tumor cells (ISET) method.
    Sun N; Li X; Wang Z; Li Y; Pei R
    Biosens Bioelectron; 2018 Apr; 102():157-163. PubMed ID: 29132051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-Cell Isolation of Circulating Tumor Cells from Whole Blood by Lateral Magnetophoretic Microseparation and Microfluidic Dispensing.
    Kim J; Cho H; Han SI; Han KH
    Anal Chem; 2016 May; 88(9):4857-63. PubMed ID: 27093098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localized Electroporation With Dielectrophoretic Field Flow Fractionation: Toward Removal of Circulating Tumour Cells From Human Blood.
    Kinio S; Mills JK
    IEEE Trans Nanobioscience; 2017 Dec; 16(8):802-809. PubMed ID: 29053456
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optically induced dielectropheresis sorting with automated medium exchange in an integrated optofluidic device resulting in higher cell viability.
    Lee GB; Wu HC; Yang PF; Mai JD
    Lab Chip; 2014 Aug; 14(15):2837-43. PubMed ID: 24911448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highlighting the uniqueness in dielectrophoretic enrichment of circulating tumor cells.
    S Iliescu F; Sim WJ; Heidari H; P Poenar D; Miao J; Taylor HK; Iliescu C
    Electrophoresis; 2019 May; 40(10):1457-1477. PubMed ID: 30676660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Screen-printed microfluidic dielectrophoresis chip for cell separation.
    Zhu H; Lin X; Su Y; Dong H; Wu J
    Biosens Bioelectron; 2015 Jan; 63():371-378. PubMed ID: 25127471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis.
    Alazzam A; Mathew B; Alhammadi F
    J Sep Sci; 2017 Mar; 40(5):1193-1200. PubMed ID: 28035792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Implementation of flexible virtual microchannels based on optically induced dielectrophoresis.
    Li B; Yang H; Song Z; Xu H; Wang J; Wang Z
    Nanotechnology; 2022 Apr; 33(29):. PubMed ID: 35086078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Image-based sorting and negative dielectrophoresis for high purity cell and particle separation.
    Thomas RSW; Mitchell PD; Oreffo ROC; Morgan H; Green NG
    Electrophoresis; 2019 Oct; 40(20):2718-2727. PubMed ID: 31206722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection.
    Holmes D; Morgan H; Green NG
    Biosens Bioelectron; 2006 Feb; 21(8):1621-30. PubMed ID: 16332434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells.
    Aghaamoo M; Aghilinejad A; Chen X; Xu J
    Electrophoresis; 2019 May; 40(10):1486-1493. PubMed ID: 30740752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical simulation of optically-induced dielectrophoresis using a voltage-transformation-ratio model.
    Hung SH; Huang SC; Lee GB
    Sensors (Basel); 2013 Feb; 13(2):1965-83. PubMed ID: 23385411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic Separation of Circulating Tumor Cells Based on Size and Deformability.
    Park ES; Duffy SP; Ma H
    Methods Mol Biol; 2017; 1634():21-32. PubMed ID: 28819838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells.
    Lim LS; Hu M; Huang MC; Cheong WC; Gan AT; Looi XL; Leong SM; Koay ES; Li MH
    Lab Chip; 2012 Nov; 12(21):4388-96. PubMed ID: 22930096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward Microfluidic Label-Free Isolation and Enumeration of Circulating Tumor Cells from Blood Samples.
    Raillon C; Che J; Thill S; Duchamp M; Desbiolles BXE; Millet A; Sollier E; Renaud P
    Cytometry A; 2019 Oct; 95(10):1085-1095. PubMed ID: 31364817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Throughput Selective Capture of Single Circulating Tumor Cells by Dielectrophoresis at a Wireless Electrode Array.
    Li M; Anand RK
    J Am Chem Soc; 2017 Jul; 139(26):8950-8959. PubMed ID: 28609630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The electrodynamics of rod-like microparticles based on optically induced dielectrophoresis.
    Shi L; Zhong X; Wu T; Bian Q; Liu X; Miao H; Deng Y; Yin B; Zhou T
    Electrophoresis; 2022 Nov; 43(21-22):2175-2183. PubMed ID: 36209396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles.
    Wang W; Lin YH; Guan RS; Wen TC; Guo TF; Lee GB
    Opt Express; 2009 Sep; 17(20):17603-13. PubMed ID: 19907545
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoelectromechanical Chip (NELMEC) Combination of Nanoelectronics and Microfluidics to Diagnose Epithelial and Mesenchymal Circulating Tumor Cells from Leukocytes.
    Hosseini SA; Abdolahad M; Zanganeh S; Dahmardeh M; Gharooni M; Abiri H; Alikhani A; Mohajerzadeh S; Mashinchian O
    Small; 2016 Feb; 12(7):883-91. PubMed ID: 26727927
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis.
    Bhattacharya S; Chao TC; Ariyasinghe N; Ruiz Y; Lake D; Ros R; Ros A
    Anal Bioanal Chem; 2014 Mar; 406(7):1855-65. PubMed ID: 24408303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.