These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24110283)

  • 1. An optimized and low-cost FPGA-based DNA sequence alignment--a step towards personal genomics.
    Shah HA; Hasan L; Ahmad N
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2696-9. PubMed ID: 24110283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences.
    Bininda-Emonds OR
    BMC Bioinformatics; 2005 Jun; 6():156. PubMed ID: 15969769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Real-Time de novo DNA Sequencing Assembly Platform Based on an FPGA Implementation.
    Hu Y; Georgiou P
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):291-300. PubMed ID: 27045828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SWIFOLD: Smith-Waterman implementation on FPGA with OpenCL for long DNA sequences.
    Rucci E; Garcia C; Botella G; De Giusti A; Naiouf M; Prieto-Matias M
    BMC Syst Biol; 2018 Nov; 12(Suppl 5):96. PubMed ID: 30458766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TotalReCaller: improved accuracy and performance via integrated alignment and base-calling.
    Menges F; Narzisi G; Mishra B
    Bioinformatics; 2011 Sep; 27(17):2330-7. PubMed ID: 21724593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FPGASW: Accelerating Large-Scale Smith-Waterman Sequence Alignment Application with Backtracking on FPGA Linear Systolic Array.
    Fei X; Dan Z; Lina L; Xin M; Chunlei Z
    Interdiscip Sci; 2018 Mar; 10(1):176-188. PubMed ID: 28432608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA).
    Li IT; Shum W; Truong K
    BMC Bioinformatics; 2007 Jun; 8():185. PubMed ID: 17555593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FPGA-Accelerated 3rd Generation DNA Sequencing.
    Wu Z; Hammad K; Ghafar-Zadeh E; Magierowski S
    IEEE Trans Biomed Circuits Syst; 2020 Feb; 14(1):65-74. PubMed ID: 31825872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From genomics to metagenomics.
    Desai N; Antonopoulos D; Gilbert JA; Glass EM; Meyer F
    Curr Opin Biotechnol; 2012 Feb; 23(1):72-6. PubMed ID: 22227326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-speed multiple sequence alignment on a reconfigurable platform.
    Oliver T; Schmidt B; Maskell D; Nathan D; Clemens R
    Int J Bioinform Res Appl; 2006; 2(4):394-406. PubMed ID: 18048180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leveraging FPGAs for Accelerating Short Read Alignment.
    Arram J; Kaplan T; Luk W; Jiang P
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):668-677. PubMed ID: 26955050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shouji: a fast and efficient pre-alignment filter for sequence alignment.
    Alser M; Hassan H; Kumar A; Mutlu O; Alkan C
    Bioinformatics; 2019 Nov; 35(21):4255-4263. PubMed ID: 30923804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-threading the generation of Burrows-Wheeler Alignment.
    Jo H
    Genet Mol Res; 2016 May; 15(2):. PubMed ID: 27323088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerating the Next Generation Long Read Mapping with the FPGA-Based System.
    Chen P; Wang C; Li X; Zhou X
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):840-52. PubMed ID: 26356857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA Assembly with De Bruijn Graphs Using an FPGA Platform.
    Poirier C; Gosselin B; Fortier P
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):1003-1009. PubMed ID: 28436886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of Deep Neural Networks Using SoCs with OpenCL.
    Gadea-Gironés R; Colom-Palero R; Herrero-Bosch V
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29710875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient end-to-end long-read sequence mapping using minimap2-fpga integrated with hardware accelerated chaining.
    Liyanage K; Samarakoon H; Parameswaran S; Gamaarachchi H
    Sci Rep; 2023 Nov; 13(1):20174. PubMed ID: 37978244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic signal processing methods for computation of alignment-free distances from DNA sequences.
    Borrayo E; Mendizabal-Ruiz EG; Vélez-Pérez H; Romo-Vázquez R; Mendizabal AP; Morales JA
    PLoS One; 2014; 9(11):e110954. PubMed ID: 25393409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data.
    Abuín JM; Pichel JC; Pena TF; Amigo J
    PLoS One; 2016; 11(5):e0155461. PubMed ID: 27182962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An OpenMP-based tool for finding longest common subsequence in bioinformatics.
    Shikder R; Thulasiraman P; Irani P; Hu P
    BMC Res Notes; 2019 Apr; 12(1):220. PubMed ID: 30971295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.