These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 24110301)
1. Likelihood Gradient Ascent (LGA): a closed-loop decoder adaptation algorithm for brain-machine interfaces. Dangi S; Gowda S; Carmena JM Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2768-71. PubMed ID: 24110301 [TBL] [Abstract][Full Text] [Related]
2. Continuous closed-loop decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acquisition in brain-machine interfaces. Dangi S; Gowda S; Moorman HG; Orsborn AL; So K; Shanechi M; Carmena JM Neural Comput; 2014 Sep; 26(9):1811-39. PubMed ID: 24922501 [TBL] [Abstract][Full Text] [Related]
3. Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces. Dangi S; Orsborn AL; Moorman HG; Carmena JM Neural Comput; 2013 Jul; 25(7):1693-731. PubMed ID: 23607558 [TBL] [Abstract][Full Text] [Related]
4. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering. Shanechi MM; Orsborn AL; Carmena JM PLoS Comput Biol; 2016 Apr; 12(4):e1004730. PubMed ID: 27035820 [TBL] [Abstract][Full Text] [Related]
5. Brain-machine interface control using broadband spectral power from local field potentials. Dangi S; So K; Orsborn AL; Gastpar MC; Carmena JM Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():285-8. PubMed ID: 24109680 [TBL] [Abstract][Full Text] [Related]
6. High-performance brain-machine interface enabled by an adaptive optimal feedback-controlled point process decoder. Shanechi MM; Orsborn A; Moorman H; Gowda S; Carmena JM Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6493-6. PubMed ID: 25571483 [TBL] [Abstract][Full Text] [Related]
7. Optimal calibration of the learning rate in closed-loop adaptive brain-machine interfaces. Hsieh HL; Shanechi MM Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1667-70. PubMed ID: 26736596 [TBL] [Abstract][Full Text] [Related]
9. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces. Dethier J; Nuyujukian P; Ryu SI; Shenoy KV; Boahen K J Neural Eng; 2013 Jun; 10(3):036008. PubMed ID: 23574919 [TBL] [Abstract][Full Text] [Related]
10. Exploring time-scales of closed-loop decoder adaptation in brain-machine interfaces. Orsborn AL; Dangi S; Moorman HG; Carmena JM Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5436-9. PubMed ID: 22255567 [TBL] [Abstract][Full Text] [Related]
11. Parameter estimation for maximizing controllability of linear brain-machine interfaces. Gowda S; Orsborn AL; Carmena JM Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1314-7. PubMed ID: 23366140 [TBL] [Abstract][Full Text] [Related]
12. Investigating the role of firing-rate normalization and dimensionality reduction in brain-machine interface robustness. Kao JC; Nuyujukian P; Stavisky S; Ryu SI; Ganguli S; Shenoy KV Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():293-8. PubMed ID: 24109682 [TBL] [Abstract][Full Text] [Related]
13. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics. Prins NW; Sanchez JC; Prasad A J Neural Eng; 2017 Jun; 14(3):036016. PubMed ID: 28240598 [TBL] [Abstract][Full Text] [Related]
14. A simulation study on the effects of neuronal ensemble properties on decoding algorithms for intracortical brain-machine interfaces. Kim MK; Sohn JW; Lee B; Kim SP Biomed Eng Online; 2018 Feb; 17(1):28. PubMed ID: 29486778 [TBL] [Abstract][Full Text] [Related]
15. Multiscale modeling and decoding algorithms for spike-field activity. Hsieh HL; Wong YT; Pesaran B; Shanechi MM J Neural Eng; 2019 Feb; 16(1):016018. PubMed ID: 30523833 [TBL] [Abstract][Full Text] [Related]
16. Adaptive neuron-to-EMG decoder training for FES neuroprostheses. Ethier C; Acuna D; Solla SA; Miller LE J Neural Eng; 2016 Aug; 13(4):046009. PubMed ID: 27247280 [TBL] [Abstract][Full Text] [Related]
17. Subject-specific modulation of local field potential spectral power during brain-machine interface control in primates. So K; Dangi S; Orsborn AL; Gastpar MC; Carmena JM J Neural Eng; 2014 Apr; 11(2):026002. PubMed ID: 24503623 [TBL] [Abstract][Full Text] [Related]
18. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces. Li S; Li J; Li Z Front Neurosci; 2016; 10():587. PubMed ID: 28066170 [TBL] [Abstract][Full Text] [Related]
19. Stochastic optimal control as a theory of brain-machine interface operation. Lagang M; Srinivasan L Neural Comput; 2013 Feb; 25(2):374-417. PubMed ID: 23148413 [TBL] [Abstract][Full Text] [Related]
20. Dynamic analysis of naive adaptive brain-machine interfaces. Kowalski KC; He BD; Srinivasan L Neural Comput; 2013 Sep; 25(9):2373-420. PubMed ID: 23777523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]