BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24110301)

  • 1. Likelihood Gradient Ascent (LGA): a closed-loop decoder adaptation algorithm for brain-machine interfaces.
    Dangi S; Gowda S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2768-71. PubMed ID: 24110301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous closed-loop decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acquisition in brain-machine interfaces.
    Dangi S; Gowda S; Moorman HG; Orsborn AL; So K; Shanechi M; Carmena JM
    Neural Comput; 2014 Sep; 26(9):1811-39. PubMed ID: 24922501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces.
    Dangi S; Orsborn AL; Moorman HG; Carmena JM
    Neural Comput; 2013 Jul; 25(7):1693-731. PubMed ID: 23607558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering.
    Shanechi MM; Orsborn AL; Carmena JM
    PLoS Comput Biol; 2016 Apr; 12(4):e1004730. PubMed ID: 27035820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-machine interface control using broadband spectral power from local field potentials.
    Dangi S; So K; Orsborn AL; Gastpar MC; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():285-8. PubMed ID: 24109680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance brain-machine interface enabled by an adaptive optimal feedback-controlled point process decoder.
    Shanechi MM; Orsborn A; Moorman H; Gowda S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6493-6. PubMed ID: 25571483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal calibration of the learning rate in closed-loop adaptive brain-machine interfaces.
    Hsieh HL; Shanechi MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1667-70. PubMed ID: 26736596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closed-loop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions.
    Orsborn AL; Dangi S; Moorman HG; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):468-77. PubMed ID: 22772374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces.
    Dethier J; Nuyujukian P; Ryu SI; Shenoy KV; Boahen K
    J Neural Eng; 2013 Jun; 10(3):036008. PubMed ID: 23574919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring time-scales of closed-loop decoder adaptation in brain-machine interfaces.
    Orsborn AL; Dangi S; Moorman HG; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5436-9. PubMed ID: 22255567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter estimation for maximizing controllability of linear brain-machine interfaces.
    Gowda S; Orsborn AL; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1314-7. PubMed ID: 23366140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the role of firing-rate normalization and dimensionality reduction in brain-machine interface robustness.
    Kao JC; Nuyujukian P; Stavisky S; Ryu SI; Ganguli S; Shenoy KV
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():293-8. PubMed ID: 24109682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics.
    Prins NW; Sanchez JC; Prasad A
    J Neural Eng; 2017 Jun; 14(3):036016. PubMed ID: 28240598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simulation study on the effects of neuronal ensemble properties on decoding algorithms for intracortical brain-machine interfaces.
    Kim MK; Sohn JW; Lee B; Kim SP
    Biomed Eng Online; 2018 Feb; 17(1):28. PubMed ID: 29486778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale modeling and decoding algorithms for spike-field activity.
    Hsieh HL; Wong YT; Pesaran B; Shanechi MM
    J Neural Eng; 2019 Feb; 16(1):016018. PubMed ID: 30523833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive neuron-to-EMG decoder training for FES neuroprostheses.
    Ethier C; Acuna D; Solla SA; Miller LE
    J Neural Eng; 2016 Aug; 13(4):046009. PubMed ID: 27247280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subject-specific modulation of local field potential spectral power during brain-machine interface control in primates.
    So K; Dangi S; Orsborn AL; Gastpar MC; Carmena JM
    J Neural Eng; 2014 Apr; 11(2):026002. PubMed ID: 24503623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.
    Li S; Li J; Li Z
    Front Neurosci; 2016; 10():587. PubMed ID: 28066170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic optimal control as a theory of brain-machine interface operation.
    Lagang M; Srinivasan L
    Neural Comput; 2013 Feb; 25(2):374-417. PubMed ID: 23148413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic analysis of naive adaptive brain-machine interfaces.
    Kowalski KC; He BD; Srinivasan L
    Neural Comput; 2013 Sep; 25(9):2373-420. PubMed ID: 23777523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.