These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24110301)

  • 21. Making brain-machine interfaces robust to future neural variability.
    Sussillo D; Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    Nat Commun; 2016 Dec; 7():13749. PubMed ID: 27958268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reinforcement Learning-based Kalman Filter for Adaptive Brain Control in Brain-Machine Interface
    Zhang X; Song Z; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6619-6622. PubMed ID: 34892625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intention estimation in brain-machine interfaces.
    Fan JM; Nuyujukian P; Kao JC; Chestek CA; Ryu SI; Shenoy KV
    J Neural Eng; 2014 Feb; 11(1):016004. PubMed ID: 24654266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards Intelligent Intracortical BMI (i
    Shaikh S; So R; Sibindi T; Libedinsky C; Basu A
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1615-1624. PubMed ID: 31581098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kernel Reinforcement Learning-Assisted Adaptive Decoder Facilitates Stable and Continuous Brain Control Tasks.
    Zhang X; Chen S; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4125-4134. PubMed ID: 37792657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces.
    Kao JC; Ryu SI; Shenoy KV
    Sci Rep; 2017 Aug; 7(1):7395. PubMed ID: 28784984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining decoder design and neural adaptation in brain-machine interfaces.
    Shenoy KV; Carmena JM
    Neuron; 2014 Nov; 84(4):665-80. PubMed ID: 25459407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiscale brain-machine interface decoders.
    Han-Lin Hsieh ; Shanechi MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6361-6364. PubMed ID: 28269704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decoder remapping to counteract neuron loss in brain-machine interfaces.
    Heliot R; Venkatraman S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1670-3. PubMed ID: 21096393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An adaptive closed-loop ECoG decoder for long-term and stable bimanual control of an exoskeleton by a tetraplegic.
    Moly A; Costecalde T; Martel F; Martin M; Larzabal C; Karakas S; Verney A; Charvet G; Chabardes S; Benabid AL; Aksenova T
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35234665
    [No Abstract]   [Full Text] [Related]  

  • 31. Shared Prosthetic Control Based on Multiple Movement Intent Decoders.
    Dantas H; Hansen TC; Warren DJ; Mathews VJ
    IEEE Trans Biomed Eng; 2021 May; 68(5):1547-1556. PubMed ID: 33326374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain-computer interface algorithms.
    Chase SM; Schwartz AB; Kass RE
    Neural Netw; 2009 Nov; 22(9):1203-13. PubMed ID: 19502004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cluster Kernel Reinforcement Learning-based Kalman Filter for Three-Lever Discrimination Task in Brain-Machine Interface.
    Song Z; Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():690-693. PubMed ID: 36086404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploiting Task Constraints for Self-Calibrated Brain-Machine Interface Control Using Error-Related Potentials.
    Iturrate I; Grizou J; Omedes J; Oudeyer PY; Lopes M; Montesano L
    PLoS One; 2015; 10(7):e0131491. PubMed ID: 26131890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Augmenting intracortical brain-machine interface with neurally driven error detectors.
    Even-Chen N; Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    J Neural Eng; 2017 Dec; 14(6):066007. PubMed ID: 29130452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Considering Neural Connectivity in Point Process Decoder for Brain-Machine Interface
    Chen S; Liu X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6341-6344. PubMed ID: 34892563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain-Machine Interface Control Algorithms.
    Shanechi MM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1725-1734. PubMed ID: 28113323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A brain machine interface control algorithm designed from a feedback control perspective.
    Gilja V; Nuyujukian P; Chestek CA; Cunningham JP; Yu BM; Fan JM; Ryu SI; Shenoy KV
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1318-22. PubMed ID: 23366141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A high performing brain-machine interface driven by low-frequency local field potentials alone and together with spikes.
    Stavisky SD; Kao JC; Nuyujukian P; Ryu SI; Shenoy KV
    J Neural Eng; 2015 Jun; 12(3):036009. PubMed ID: 25946198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Motor cortical decoding performance depends on controlled system order.
    Matlack C; Haddock A; Moritz CT; Chizeck HJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2553-6. PubMed ID: 25570511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.