BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24110355)

  • 1. Automated method for extraction of lung tumors using a machine learning classifier with knowledge of radiation oncologists on data sets of planning CT and FDG-PET/CT images.
    Arimura H; Jin Z; Shioyama Y; Nakamura K; Magome T; Sasaki M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2988-91. PubMed ID: 24110355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of pixel-based machine-learning techniques on automated frameworks for delineation of gross tumor volume regions for stereotactic body radiation therapy.
    Kawata Y; Arimura H; Ikushima K; Jin Z; Morita K; Tokunaga C; Yabu-Uchi H; Shioyama Y; Sasaki T; Honda H; Sasaki M
    Phys Med; 2017 Oct; 42():141-149. PubMed ID: 29173908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-assisted framework for machine-learning-based delineation of GTV regions on datasets of planning CT and PET/CT images.
    Ikushima K; Arimura H; Jin Z; Yabu-Uchi H; Kuwazuru J; Shioyama Y; Sasaki T; Honda H; Sasaki M
    J Radiat Res; 2017 Jan; 58(1):123-134. PubMed ID: 27609193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist?
    Hanna GG; Carson KJ; Lynch T; McAleese J; Cosgrove VP; Eakin RL; Stewart DP; Zatari A; O'Sullivan JM; Hounsell AR
    Int J Radiat Oncol Biol Phys; 2010 Nov; 78(4):1040-51. PubMed ID: 20350798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-assisted delineation of lung tumor regions in treatment planning CT images with PET/CT image sets based on an optimum contour selection method.
    Jin Z; Arimura H; Shioyama Y; Nakamura K; Kuwazuru J; Magome T; Yabu-Uchi H; Honda H; Hirata H; Sasaki M
    J Radiat Res; 2014 Nov; 55(6):1153-62. PubMed ID: 24980022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the detection of small lesions using a state-of-the-art time-of-flight PET/CT system and small-voxel reconstructions.
    Koopman D; van Dalen JA; Lagerweij MC; Arkies H; de Boer J; Oostdijk AH; Slump CH; Jager PL
    J Nucl Med Technol; 2015 Mar; 43(1):21-7. PubMed ID: 25613334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning.
    Yu H; Caldwell C; Mah K; Mozeg D
    IEEE Trans Med Imaging; 2009 Mar; 28(3):374-83. PubMed ID: 19244009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study.
    Mah K; Caldwell CB; Ung YC; Danjoux CE; Balogh JM; Ganguli SN; Ehrlich LE; Tirona R
    Int J Radiat Oncol Biol Phys; 2002 Feb; 52(2):339-50. PubMed ID: 11872279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method of detecting pulmonary nodules with PET/CT based on an improved watershed algorithm.
    Zhao J; Ji G; Qiang Y; Han X; Pei B; Shi Z
    PLoS One; 2015; 10(4):e0123694. PubMed ID: 25853496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer.
    Bradley J; Thorstad WL; Mutic S; Miller TR; Dehdashti F; Siegel BA; Bosch W; Bertrand RJ
    Int J Radiat Oncol Biol Phys; 2004 May; 59(1):78-86. PubMed ID: 15093902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from (18)F-FDG PET-CT images for the evaluation of mediastinal lymph nodes in patients with lung cancer.
    Gao X; Chu C; Li Y; Lu P; Wang W; Liu W; Yu L
    Eur J Radiol; 2015 Feb; 84(2):312-7. PubMed ID: 25487819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer.
    Deniaud-Alexandre E; Touboul E; Lerouge D; Grahek D; Foulquier JN; Petegnief Y; Grès B; El Balaa H; Keraudy K; Kerrou K; Montravers F; Milleron B; Lebeau B; Talbot JN
    Int J Radiat Oncol Biol Phys; 2005 Dec; 63(5):1432-41. PubMed ID: 16125870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interchangeability of radiomic features between [18F]-FDG PET/CT and [18F]-FDG PET/MR.
    Vuong D; Tanadini-Lang S; Huellner MW; Veit-Haibach P; Unkelbach J; Andratschke N; Kraft J; Guckenberger M; Bogowicz M
    Med Phys; 2019 Apr; 46(4):1677-1685. PubMed ID: 30714158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of FDG PET/CT on delineation of the gross tumor volume for radiation planning in non-small-cell lung cancer.
    Spratt DE; Diaz R; McElmurray J; Csiki I; Duggan D; Lu B; Delbeke D
    Clin Nucl Med; 2010 Apr; 35(4):237-43. PubMed ID: 20305410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated interpretation of PET/CT images in patients with lung cancer.
    Gutte H; Jakobsson D; Olofsson F; Ohlsson M; Valind S; Loft A; Edenbrandt L; Kjaer A
    Nucl Med Commun; 2007 Feb; 28(2):79-84. PubMed ID: 17198346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer?
    Fox JL; Rengan R; O'Meara W; Yorke E; Erdi Y; Nehmeh S; Leibel SA; Rosenzweig KE
    Int J Radiat Oncol Biol Phys; 2005 May; 62(1):70-5. PubMed ID: 15850904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomics analysis for the differentiation of autoimmune pancreatitis and pancreatic ductal adenocarcinoma in
    Zhang Y; Cheng C; Liu Z; Wang L; Pan G; Sun G; Chang Y; Zuo C; Yang X
    Med Phys; 2019 Oct; 46(10):4520-4530. PubMed ID: 31348535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging.
    Dong X; Wu P; Sun X; Li W; Wan H; Yu J; Xing L
    J Med Imaging Radiat Oncol; 2015 Jun; 59(3):338-45. PubMed ID: 25708154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical utility of 4D FDG-PET/CT scans in radiation treatment planning.
    Aristophanous M; Berbeco RI; Killoran JH; Yap JT; Sher DJ; Allen AM; Larson E; Chen AB
    Int J Radiat Oncol Biol Phys; 2012 Jan; 82(1):e99-105. PubMed ID: 21377285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer.
    Ashamalla H; Rafla S; Parikh K; Mokhtar B; Goswami G; Kambam S; Abdel-Dayem H; Guirguis A; Ross P; Evola A
    Int J Radiat Oncol Biol Phys; 2005 Nov; 63(4):1016-23. PubMed ID: 15979817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.