BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24110359)

  • 1. Automated analysis of zebrafish images for screening toxicants.
    Hans C; McCollum CW; Bondesson MB; Gustafsson JA; Shah SK; Merchant FA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3004-7. PubMed ID: 24110359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The zebrafish embryo model in environmental risk assessment--applications beyond acute toxicity testing.
    Scholz S; Fischer S; Gündel U; Küster E; Luckenbach T; Voelker D
    Environ Sci Pollut Res Int; 2008 Jul; 15(5):394-404. PubMed ID: 18575912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental toxicity assay using high content screening of zebrafish embryos.
    Lantz-McPeak S; Guo X; Cuevas E; Dumas M; Newport GD; Ali SF; Paule MG; Kanungo J
    J Appl Toxicol; 2015 Mar; 35(3):261-72. PubMed ID: 24871937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated image-based phenotypic analysis in zebrafish embryos.
    Vogt A; Cholewinski A; Shen X; Nelson SG; Lazo JS; Tsang M; Hukriede NA
    Dev Dyn; 2009 Mar; 238(3):656-63. PubMed ID: 19235725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of environmental chemicals that induce yolk malabsorption in zebrafish using automated image segmentation.
    Kalasekar SM; Zacharia E; Kessler N; Ducharme NA; Gustafsson JÅ; Kakadiaris IA; Bondesson M
    Reprod Toxicol; 2015 Aug; 55():20-9. PubMed ID: 25462786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated phenotype recognition for zebrafish embryo based in vivo high throughput toxicity screening of engineered nano-materials.
    Liu R; Lin S; Rallo R; Zhao Y; Damoiseaux R; Xia T; Lin S; Nel A; Cohen Y
    PLoS One; 2012; 7(4):e35014. PubMed ID: 22506062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zebrafish developmental screening of the ToxCast™ Phase I chemical library.
    Padilla S; Corum D; Padnos B; Hunter DL; Beam A; Houck KA; Sipes N; Kleinstreuer N; Knudsen T; Dix DJ; Reif DM
    Reprod Toxicol; 2012 Apr; 33(2):174-87. PubMed ID: 22182468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Morphological Feature Assessment for Zebrafish Embryo Developmental Toxicity Screens.
    Teixidó E; Kießling TR; Krupp E; Quevedo C; Muriana A; Scholz S
    Toxicol Sci; 2019 Feb; 167(2):438-449. PubMed ID: 30295906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zebrafish teratogenicity testing.
    Brannen KC; Charlap JH; Lewis EM
    Methods Mol Biol; 2013; 947():383-401. PubMed ID: 23138918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zebrafish: as an integrative model for twenty-first century toxicity testing.
    Sipes NS; Padilla S; Knudsen TB
    Birth Defects Res C Embryo Today; 2011 Sep; 93(3):256-67. PubMed ID: 21932434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated feature detection and imaging for high-resolution screening of zebrafish embryos.
    Peravali R; Gehrig J; Giselbrecht S; Lütjohann DS; Hadzhiev Y; Müller F; Liebel U
    Biotechniques; 2011 May; 50(5):319-24. PubMed ID: 21548893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening for angiogenic inhibitors in zebrafish to evaluate a predictive model for developmental vascular toxicity.
    Tal T; Kilty C; Smith A; LaLone C; Kennedy B; Tennant A; McCollum CW; Bondesson M; Knudsen T; Padilla S; Kleinstreuer N
    Reprod Toxicol; 2017 Jun; 70():70-81. PubMed ID: 28007540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a quantitative morphological assessment of toxicant-treated zebrafish larvae using brightfield imaging and high-content analysis.
    Deal S; Wambaugh J; Judson R; Mosher S; Radio N; Houck K; Padilla S
    J Appl Toxicol; 2016 Sep; 36(9):1214-22. PubMed ID: 26924781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of zebrafish mutants to identify secondary target effects of acetylcholine esterase inhibitors.
    Behra M; Etard C; Cousin X; Strähle U
    Toxicol Sci; 2004 Feb; 77(2):325-33. PubMed ID: 14657522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An automated and high-throughput Photomotor Response platform for chemical screens.
    Marcato D; Alshut R; Breitwieser H; Mikut R; Strahle U; Pylatiuk C; Peravali R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7728-31. PubMed ID: 26738083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multidimensional in vivo hazard assessment using zebrafish.
    Truong L; Reif DM; St Mary L; Geier MC; Truong HD; Tanguay RL
    Toxicol Sci; 2014 Jan; 137(1):212-33. PubMed ID: 24136191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zebrafish as potential model for developmental neurotoxicity testing: a mini review.
    de Esch C; Slieker R; Wolterbeek A; Woutersen R; de Groot D
    Neurotoxicol Teratol; 2012; 34(6):545-53. PubMed ID: 22971930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated, quantitative screening assay for antiangiogenic compounds using transgenic zebrafish.
    Tran TC; Sneed B; Haider J; Blavo D; White A; Aiyejorun T; Baranowski TC; Rubinstein AL; Doan TN; Dingledine R; Sandberg EM
    Cancer Res; 2007 Dec; 67(23):11386-92. PubMed ID: 18056466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zebrafish embryos as models for embryotoxic and teratological effects of chemicals.
    Yang L; Ho NY; Alshut R; Legradi J; Weiss C; Reischl M; Mikut R; Liebel U; Müller F; Strähle U
    Reprod Toxicol; 2009 Sep; 28(2):245-53. PubMed ID: 19406227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zebrafish: a multifaceted tool for chemical biologists.
    Basu S; Sachidanandan C
    Chem Rev; 2013 Oct; 113(10):7952-80. PubMed ID: 23819893
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.