BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24110359)

  • 21. Development of automated imaging and analysis for zebrafish chemical screens.
    Vogt A; Codore H; Day BW; Hukriede NA; Tsang M
    J Vis Exp; 2010 Jun; (40):. PubMed ID: 20613708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated reporter quantification in vivo: high-throughput screening method for reporter-based assays in zebrafish.
    Walker SL; Ariga J; Mathias JR; Coothankandaswamy V; Xie X; Distel M; Köster RW; Parsons MJ; Bhalla KN; Saxena MT; Mumm JS
    PLoS One; 2012; 7(1):e29916. PubMed ID: 22238673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developmental Effects of the ToxCast™ Phase I and Phase II Chemicals in Caenorhabditis elegans and Corresponding Responses in Zebrafish, Rats, and Rabbits.
    Boyd WA; Smith MV; Co CA; Pirone JR; Rice JR; Shockley KR; Freedman JH
    Environ Health Perspect; 2016 May; 124(5):586-93. PubMed ID: 26496690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Zebrafish as a model system for environmental health studies in the grade 9-12 classroom.
    Tomasiewicz HG; Hesselbach R; Carvan MJ; Goldberg B; Berg CA; Petering DH
    Zebrafish; 2014 Aug; 11(4):384-95. PubMed ID: 24941301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The developing zebrafish (Danio rerio): a vertebrate model for high-throughput screening of chemical libraries.
    Lessman CA
    Birth Defects Res C Embryo Today; 2011 Sep; 93(3):268-80. PubMed ID: 21932435
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transgenic fish systems and their application in ecotoxicology.
    Lee O; Green JM; Tyler CR
    Crit Rev Toxicol; 2015 Feb; 45(2):124-41. PubMed ID: 25394772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zebrafish as an alternative method for determining the embryo toxicity of plant products: a systematic review.
    Falcão MAP; de Souza LS; Dolabella SS; Guimarães AG; Walker CIB
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35015-35026. PubMed ID: 30357668
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functions of thioredoxin1 in brain development and in response to environmental chemicals in zebrafish embryos.
    Yang L; Zeng C; Zhang Y; Wang F; Takamiya M; Strähle U
    Toxicol Lett; 2019 Oct; 314():43-52. PubMed ID: 31310794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zebrafish AC
    Lavado GJ; Gadaleta D; Toma C; Golbamaki A; Toropov AA; Toropova AP; Marzo M; Baderna D; Arning J; Benfenati E
    Ecotoxicol Environ Saf; 2020 Oct; 202():110936. PubMed ID: 32800219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-throughput assessment of oxidative respiration in fish embryos: Advancing adverse outcome pathways for mitochondrial dysfunction.
    Souders CL; Liang X; Wang X; Ector N; Zhao YH; Martyniuk CJ
    Aquat Toxicol; 2018 Jun; 199():162-173. PubMed ID: 29631217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of an Automated Morphometric Approach to Assess Vascular Outcomes following Exposure to Environmental Chemicals in Zebrafish.
    Zhong X; Chen J; Zhang Z; Zhu Q; Ji D; Ke W; Niu C; Wang C; Zhao N; Chen W; Jia K; Liu Q; Song M; Liu C; Wei Y
    Environ Health Perspect; 2024 May; 132(5):57001. PubMed ID: 38701112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A versatile, automated and high-throughput drug screening platform for zebrafish embryos.
    Lubin A; Otterstrom J; Hoade Y; Bjedov I; Stead E; Whelan M; Gestri G; Paran Y; Payne E
    Biol Open; 2021 Sep; 10(9):. PubMed ID: 34472582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals.
    Fraysse B; Mons R; Garric J
    Ecotoxicol Environ Saf; 2006 Feb; 63(2):253-67. PubMed ID: 16677909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automatic segmentation of time-lapse microscopy images depicting a live Dharma embryo.
    Zacharia E; Bondesson M; Riu A; Ducharme NA; Gustafsson JÅ; Kakadiaris IA
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8082-5. PubMed ID: 22256217
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of embryotoxicity using the zebrafish model.
    Truong L; Harper SL; Tanguay RL
    Methods Mol Biol; 2011; 691():271-9. PubMed ID: 20972759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Establishment of a three-step method to evaluate effects of chemicals on development of zebrafish embryo/larvae.
    Li G; Ye H; Su G; Han Z; Xie C; Zhou B; Letcher RJ; Giesy JP; Yu H; Liu C
    Chemosphere; 2017 Nov; 186():209-217. PubMed ID: 28780448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of Benchmark Concentration (BMC) Analysis on Zebrafish Data: A New Perspective for Quantifying Toxicity in Alternative Animal Models.
    Hsieh JH; Ryan K; Sedykh A; Lin JA; Shapiro AJ; Parham F; Behl M
    Toxicol Sci; 2019 Jan; 167(1):92-104. PubMed ID: 30321397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Small molecule screening in the zebrafish.
    Murphey RD; Zon LI
    Methods; 2006 Jul; 39(3):255-61. PubMed ID: 16877005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Zebrafish (Danio rerio): A valuable tool for predicting the metabolism of xenobiotics in humans?
    de Souza Anselmo C; Sardela VF; de Sousa VP; Pereira HMG
    Comp Biochem Physiol C Toxicol Pharmacol; 2018 Oct; 212():34-46. PubMed ID: 29969680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-content screening in zebrafish embryos identifies butafenacil as a potent inducer of anemia.
    Leet JK; Lindberg CD; Bassett LA; Isales GM; Yozzo KL; Raftery TD; Volz DC
    PLoS One; 2014; 9(8):e104190. PubMed ID: 25090246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.