These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24110359)

  • 41. Identification of vascular disruptor compounds by analysis in zebrafish embryos and mouse embryonic endothelial cells.
    McCollum CW; Conde-Vancells J; Hans C; Vazquez-Chantada M; Kleinstreuer N; Tal T; Knudsen T; Shah SS; Merchant FA; Finnell RH; Gustafsson JÅ; Cabrera R; Bondesson M
    Reprod Toxicol; 2017 Jun; 70():60-69. PubMed ID: 27838387
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Morphometric signatures of exposure to endocrine disrupting chemicals in zebrafish eleutheroembryos.
    Martínez R; Herrero-Nogareda L; Van Antro M; Campos MP; Casado M; Barata C; Piña B; Navarro-Martín L
    Aquat Toxicol; 2019 Sep; 214():105232. PubMed ID: 31271907
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Zebrafish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function.
    Sarmah S; Marrs JA
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27999267
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemical screening with zebrafish embryos.
    Zhong H; Lin S
    Methods Mol Biol; 2011; 716():193-205. PubMed ID: 21318908
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chapter 4. Using the zebrafish to study vessel formation.
    McKinney MC; Weinstein BM
    Methods Enzymol; 2008; 444():65-97. PubMed ID: 19007661
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A fully automated robotic system for microinjection of zebrafish embryos.
    Wang W; Liu X; Gelinas D; Ciruna B; Sun Y
    PLoS One; 2007 Sep; 2(9):e862. PubMed ID: 17848993
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Zebrafish model systems for developmental neurobehavioral toxicology.
    Bailey J; Oliveri A; Levin ED
    Birth Defects Res C Embryo Today; 2013 Mar; 99(1):14-23. PubMed ID: 23723169
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of toxicity values across zebrafish early life stages and mammalian studies: Implications for chemical testing.
    Ducharme NA; Reif DM; Gustafsson JA; Bondesson M
    Reprod Toxicol; 2015 Aug; 55():3-10. PubMed ID: 25261610
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Zebrafish: an emerging model system for human disease and drug discovery.
    Kari G; Rodeck U; Dicker AP
    Clin Pharmacol Ther; 2007 Jul; 82(1):70-80. PubMed ID: 17495877
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Brief embryonic strychnine exposure in zebrafish causes long-term adult behavioral impairment with indications of embryonic synaptic changes.
    Roy NM; Arpie B; Lugo J; Linney E; Levin ED; Cerutti D
    Neurotoxicol Teratol; 2012; 34(6):587-91. PubMed ID: 23022260
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Smart Imaging Workflow for Organ-Specific Screening in a Cystic Kidney Zebrafish Disease Model.
    Pandey G; Westhoff JH; Schaefer F; Gehrig J
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30875791
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Locomotor activity in zebrafish embryos: a new method to assess developmental neurotoxicity.
    Selderslaghs IW; Hooyberghs J; De Coen W; Witters HE
    Neurotoxicol Teratol; 2010; 32(4):460-71. PubMed ID: 20211722
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set of 27 compounds.
    Selderslaghs IW; Blust R; Witters HE
    Reprod Toxicol; 2012 Apr; 33(2):142-54. PubMed ID: 21871558
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials.
    George S; Xia T; Rallo R; Zhao Y; Ji Z; Lin S; Wang X; Zhang H; France B; Schoenfeld D; Damoiseaux R; Liu R; Lin S; Bradley KA; Cohen Y; Nel AE
    ACS Nano; 2011 Mar; 5(3):1805-17. PubMed ID: 21323332
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An interview with Robert Tanguay, Ph.D. Interviewed by Vicki Glaser.
    Tanguay R
    Zebrafish; 2007; 4(3):163-8. PubMed ID: 18041920
    [No Abstract]   [Full Text] [Related]  

  • 56. Effect-directed analysis of municipal landfill soil reveals novel developmental toxicants in the zebrafish Danio rerio.
    Legler J; van Velzen M; Cenijn PH; Houtman CJ; Lamoree MH; Wegener JW
    Environ Sci Technol; 2011 Oct; 45(19):8552-8. PubMed ID: 21823594
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The zebrafish embryotoxicity test (ZET) for nanotoxicity assessment: from morphological to molecular approach.
    Pereira AC; Gomes T; Ferreira Machado MR; Rocha TL
    Environ Pollut; 2019 Sep; 252(Pt B):1841-1853. PubMed ID: 31325757
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automated analysis of zebrafish images for phenotypic changes in drug discovery.
    Chen S; Zhu Y; Xia W; Xia S; Xu X
    J Neurosci Methods; 2011 Sep; 200(2):229-36. PubMed ID: 21767568
    [TBL] [Abstract][Full Text] [Related]  

  • 59. QSAR for baseline toxicity and classification of specific modes of action of ionizable organic chemicals in the zebrafish embryo toxicity test.
    Klüver N; Bittermann K; Escher BI
    Aquat Toxicol; 2019 Feb; 207():110-119. PubMed ID: 30557756
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae.
    Selderslaghs IW; Hooyberghs J; Blust R; Witters HE
    Neurotoxicol Teratol; 2013; 37():44-56. PubMed ID: 23357511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.