These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24110366)

  • 1. Investigation of the photoelectrochemical effect in optoelectrodes and potential uses for implantable electrode characterization.
    Khurram A; Seymour JP
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3032-5. PubMed ID: 24110366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode-electrolyte interface properties in implantation conditions.
    Riistama J; Lekkala J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6021-4. PubMed ID: 17946736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving photoelectrochemical reduction of Cr(VI) ions by building α-Fe
    Wang P; Dong F; Liu M; He H; Huo T; Zhou L; Zhang W
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):22455-22463. PubMed ID: 29460249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of a fast reconfigurable array for tissue impedance characterization.
    Habibi M; Klemer DP; Raicu V
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2284-7. PubMed ID: 19965167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Web technology based microelectrode characterization instrument.
    Hu Z; Troyk P; DeMichele G; Kerns D; Bak M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6842-5. PubMed ID: 25571568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling of Electrode-Electrolyte Interface Model Parameters In Phosphate Buffered Saline.
    Jones MH; Scott J
    IEEE Trans Biomed Circuits Syst; 2015 Jun; 9(3):441-8. PubMed ID: 25148670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing the open-circuit voltage of photoprotein-based photoelectrochemical cells by manipulation of the vacuum potential of the electrolytes.
    Tan SC; Crouch LI; Mahajan S; Jones MR; Welland ME
    ACS Nano; 2012 Oct; 6(10):9103-9. PubMed ID: 23009071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impedance spectroscopy of changes in skin-electrode impedance induced by motion.
    Cömert A; Hyttinen J
    Biomed Eng Online; 2014 Nov; 13():149. PubMed ID: 25404355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoelectrochemical degradation of Methylene Blue with beta-PbO2 electrodes driven by visible light irradiation.
    Li G; Yip H; Wong KH; Hu C; Qu J; Wong PK
    J Environ Sci (China); 2011; 23(6):998-1003. PubMed ID: 22066223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solar cells: later rather than sooner.
    Moser JE
    Nat Mater; 2005 Oct; 4(10):723-4. PubMed ID: 16195761
    [No Abstract]   [Full Text] [Related]  

  • 11. Dependence of the photoelectrochemical performance of sensitised ZnO on the crystalline orientation in electrodeposited ZnO thin films.
    Nonomura K; Komatsu D; Yoshida T; Minoura H; Schlettwein D
    Phys Chem Chem Phys; 2007 Apr; 9(15):1843-9. PubMed ID: 17415497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoelectrochemical signal chain based on quantum dots on gold--sensitive to superoxide radicals in solution.
    Stoll Ch; Gehring C; Schubert K; Zanella M; Parak WJ; Lisdat F
    Biosens Bioelectron; 2008 Oct; 24(2):260-5. PubMed ID: 18487040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fiber-based implantable multi-optrode array with contiguous optical and electrical sites.
    Chen S; Pei W; Gui Q; Chen Y; Zhao S; Wang H; Chen H
    J Neural Eng; 2013 Aug; 10(4):046020. PubMed ID: 23883568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode.
    Liu Y; Gan X; Zhou B; Xiong B; Li J; Dong C; Bai J; Cai W
    J Hazard Mater; 2009 Nov; 171(1-3):678-83. PubMed ID: 19577843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of skin-electrode impedance using concentric ring electrode.
    Besio W; Prasad A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6414-7. PubMed ID: 17946764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine sensitized nanoporous TiO2 film on electrodes: photoelectrochemical sensing of NADH under visible irradiation.
    Wang GL; Xu JJ; Chen HY
    Biosens Bioelectron; 2009 Apr; 24(8):2494-8. PubMed ID: 19185483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes.
    Kim K; Vöröslakos M; Seymour JP; Wise KD; Buzsáki G; Yoon E
    Nat Commun; 2020 Apr; 11(1):2063. PubMed ID: 32345971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states.
    Konstantatos G; Levina L; Fischer A; Sargent EH
    Nano Lett; 2008 May; 8(5):1446-50. PubMed ID: 18399622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dots on gold: electrodes for photoswitchable cytochrome C electrochemistry.
    Stoll C; Kudera S; Parak WJ; Lisdat F
    Small; 2006 Jun; 2(6):741-3. PubMed ID: 17193115
    [No Abstract]   [Full Text] [Related]  

  • 20. Photoelectric properties of a detector based on dried bacteriorhodopsin film.
    Wang WW; Knopf GK; Bassi AS
    Biosens Bioelectron; 2006 Jan; 21(7):1309-19. PubMed ID: 16039842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.