These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 24110372)
21. Seminal quality prediction using data mining methods. Sahoo AJ; Kumar Y Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862 [TBL] [Abstract][Full Text] [Related]
22. Machine learning models in breast cancer survival prediction. Montazeri M; Montazeri M; Montazeri M; Beigzadeh A Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558 [TBL] [Abstract][Full Text] [Related]
23. A hybrid cost-sensitive ensemble for imbalanced breast thermogram classification. Krawczyk B; Schaefer G; Woźniak M Artif Intell Med; 2015 Nov; 65(3):219-27. PubMed ID: 26319694 [TBL] [Abstract][Full Text] [Related]
24. A novel method for predicting kidney stone type using ensemble learning. Kazemi Y; Mirroshandel SA Artif Intell Med; 2018 Jan; 84():117-126. PubMed ID: 29241659 [TBL] [Abstract][Full Text] [Related]
25. A Novel Internet of Things Framework Integrated with Real Time Monitoring for Intelligent Healthcare Environment. Suresh A; Udendhran R; Balamurgan M; Varatharajan R J Med Syst; 2019 May; 43(6):165. PubMed ID: 31053963 [TBL] [Abstract][Full Text] [Related]
26. Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches. Son CS; Kim YN; Kim HS; Park HS; Kim MS J Biomed Inform; 2012 Oct; 45(5):999-1008. PubMed ID: 22564550 [TBL] [Abstract][Full Text] [Related]
27. Gene expression profiling of breast cancer survivability by pooled cDNA microarray analysis using logistic regression, artificial neural networks and decision trees. Chou HL; Yao CT; Su SL; Lee CY; Hu KY; Terng HJ; Shih YW; Chang YT; Lu YF; Chang CW; Wahlqvist ML; Wetter T; Chu CM BMC Bioinformatics; 2013 Mar; 14():100. PubMed ID: 23506640 [TBL] [Abstract][Full Text] [Related]
28. Predicting breast cancer survivability: a comparison of three data mining methods. Delen D; Walker G; Kadam A Artif Intell Med; 2005 Jun; 34(2):113-27. PubMed ID: 15894176 [TBL] [Abstract][Full Text] [Related]
29. A combined neural network and decision trees model for prognosis of breast cancer relapse. Jerez-Aragonés JM; Gómez-Ruiz JA; Ramos-Jiménez G; Muñoz-Pérez J; Alba-Conejo E Artif Intell Med; 2003 Jan; 27(1):45-63. PubMed ID: 12473391 [TBL] [Abstract][Full Text] [Related]
30. Hybrid outcome prediction model for severe traumatic brain injury. Pang BC; Kuralmani V; Joshi R; Hongli Y; Lee KK; Ang BT; Li J; Leong TY; Ng I J Neurotrauma; 2007 Jan; 24(1):136-46. PubMed ID: 17263677 [TBL] [Abstract][Full Text] [Related]
31. Development of a nomogram for the prediction of pathological complete response after neoadjuvant chemoradiotherapy in patients with esophageal squamous cell carcinoma. Chao YK; Chang HK; Tseng CK; Liu YH; Wen YW Dis Esophagus; 2017 Feb; 30(2):1-8. PubMed ID: 27868287 [TBL] [Abstract][Full Text] [Related]
32. Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Listgarten J; Damaraju S; Poulin B; Cook L; Dufour J; Driga A; Mackey J; Wishart D; Greiner R; Zanke B Clin Cancer Res; 2004 Apr; 10(8):2725-37. PubMed ID: 15102677 [TBL] [Abstract][Full Text] [Related]
33. Nomograms to predict pathologic complete response and metastasis-free survival after preoperative chemotherapy for breast cancer. Rouzier R; Pusztai L; Delaloge S; Gonzalez-Angulo AM; Andre F; Hess KR; Buzdar AU; Garbay JR; Spielmann M; Mathieu MC; Symmans WF; Wagner P; Atallah D; Valero V; Berry DA; Hortobagyi GN J Clin Oncol; 2005 Nov; 23(33):8331-9. PubMed ID: 16293864 [TBL] [Abstract][Full Text] [Related]
34. Application of Artificial Intelligence for Preoperative Diagnostic and Prognostic Prediction in Epithelial Ovarian Cancer Based on Blood Biomarkers. Kawakami E; Tabata J; Yanaihara N; Ishikawa T; Koseki K; Iida Y; Saito M; Komazaki H; Shapiro JS; Goto C; Akiyama Y; Saito R; Saito M; Takano H; Yamada K; Okamoto A Clin Cancer Res; 2019 May; 25(10):3006-3015. PubMed ID: 30979733 [TBL] [Abstract][Full Text] [Related]
35. Ultrasound-based prediction of pathologic response to neoadjuvant chemotherapy in breast cancer patients. Baumgartner A; Tausch C; Hosch S; Papassotiropoulos B; Varga Z; Rageth C; Baege A Breast; 2018 Jun; 39():19-23. PubMed ID: 29518677 [TBL] [Abstract][Full Text] [Related]
36. Predicting factors for survival of breast cancer patients using machine learning techniques. Ganggayah MD; Taib NA; Har YC; Lio P; Dhillon SK BMC Med Inform Decis Mak; 2019 Mar; 19(1):48. PubMed ID: 30902088 [TBL] [Abstract][Full Text] [Related]
37. Machine learning for improved pathological staging of prostate cancer: a performance comparison on a range of classifiers. Regnier-Coudert O; McCall J; Lothian R; Lam T; McClinton S; N'dow J Artif Intell Med; 2012 May; 55(1):25-35. PubMed ID: 22206941 [TBL] [Abstract][Full Text] [Related]
38. Effect of breast cancer phenotype on diagnostic performance of MRI in the prediction to response to neoadjuvant treatment. Bufi E; Belli P; Di Matteo M; Terribile D; Franceschini G; Nardone L; Petrone G; Bonomo L Eur J Radiol; 2014 Sep; 83(9):1631-8. PubMed ID: 24938669 [TBL] [Abstract][Full Text] [Related]